Utvidet returrett til 31. januar 2025

An Efficient Technique to Secure Data Access Multi Overlapping Slicing

Om An Efficient Technique to Secure Data Access Multi Overlapping Slicing

Data Mining is the process of analyzing data from different perspectives, summarizing it, and extracting the needed information from the database. Most enterprises are collecting and storing data in large databases. Database privacy is an important responsibility of organizations to protect clients sensitive information because client trusts them to do so. Various anonymization techniques have been proposed for the privacy of sensitive microdata. Generalization loses a considerable amount of information, especially for high-dimensional data. Bucketization does not prevent membership disclosure and does not apply to data that do not have a clear separation between quasi-identifying attributes and sensitive attributes. Slicing is a technique proposed for anonymized published datasets by partitioning the dataset vertically and horizontally. The proposed technique increases the utility and privacy of a sliced dataset by allowing overlapped slicing while maintaining the prevention of membership disclosure. It also provides secure data access for multiple domains. This novel approach works on overlapped slicing to improve, preserve data utility and privacy better traditional slicing.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9786207457243
  • Bindende:
  • Paperback
  • Sider:
  • 60
  • Utgitt:
  • 11. januar 2024
  • Dimensjoner:
  • 150x4x220 mm.
  • Vekt:
  • 107 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 22. desember 2024
Utvidet returrett til 31. januar 2025

Beskrivelse av An Efficient Technique to Secure Data Access Multi Overlapping Slicing

Data Mining is the process of analyzing data from different perspectives, summarizing it, and extracting the needed information from the database. Most enterprises are collecting and storing data in large databases. Database privacy is an important responsibility of organizations to protect clients sensitive information because client trusts them to do so. Various anonymization techniques have been proposed for the privacy of sensitive microdata. Generalization loses a considerable amount of information, especially for high-dimensional data. Bucketization does not prevent membership disclosure and does not apply to data that do not have a clear separation between quasi-identifying attributes and sensitive attributes. Slicing is a technique proposed for anonymized published datasets by partitioning the dataset vertically and horizontally. The proposed technique increases the utility and privacy of a sliced dataset by allowing overlapped slicing while maintaining the prevention of membership disclosure. It also provides secure data access for multiple domains. This novel approach works on overlapped slicing to improve, preserve data utility and privacy better traditional slicing.

Brukervurderinger av An Efficient Technique to Secure Data Access Multi Overlapping Slicing



Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.