Utvidet returrett til 31. januar 2025

Klassifikatoren des maschinellen Lernens &Klassifikator-Beispiele

Om Klassifikatoren des maschinellen Lernens &Klassifikator-Beispiele

Es gibt eine Reihe von Algorithmen des maschinellen Lernens (ML) zur Klassifizierung von Bodenbedeckung und Bodennutzung. In diesem Buch konzentrieren wir uns auf die relativ ausgereiften Methoden (sieben Methoden) Support-Vector-Maschinen (SVM), Entscheidungsbäume (DTs), künstliche neuronale Netze, k-nearest neighbours (k-NN), naive Bayes, Boosting und Random Forest (RF).Die genaue und zeitnahe Erfassung von Informationen zur Flächennutzung und Bodenbedeckung in Städten ist für viele Aspekte der Stadtentwicklung und des Umweltschutzes von entscheidender Bedeutung.Die genaue Klassifizierung der Bodenbedeckung ist eine Herausforderung. Die Verbesserung der Bodenbedeckungsklassifizierung ist ein aktuelles Thema. Sie wird für viele Anwendungen benötigt, z. B. für die Kartierung der Bodennutzung und -bedeckung, die Umweltüberwachung, die Bewirtschaftung natürlicher Ressourcen, die Stadtplanung und -verwaltung sowie die Erkennung von Veränderungen. Anschließend wurde eine Reihe von Methoden untersucht, um verschiedene Klassifikatoren zu kombinieren.

Vis mer
  • Språk:
  • Tysk
  • ISBN:
  • 9786206998433
  • Bindende:
  • Paperback
  • Sider:
  • 60
  • Utgitt:
  • 29. desember 2023
  • Dimensjoner:
  • 150x5x220 mm.
  • Vekt:
  • 107 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 18. desember 2024

Beskrivelse av Klassifikatoren des maschinellen Lernens &Klassifikator-Beispiele

Es gibt eine Reihe von Algorithmen des maschinellen Lernens (ML) zur Klassifizierung von Bodenbedeckung und Bodennutzung. In diesem Buch konzentrieren wir uns auf die relativ ausgereiften Methoden (sieben Methoden) Support-Vector-Maschinen (SVM), Entscheidungsbäume (DTs), künstliche neuronale Netze, k-nearest neighbours (k-NN), naive Bayes, Boosting und Random Forest (RF).Die genaue und zeitnahe Erfassung von Informationen zur Flächennutzung und Bodenbedeckung in Städten ist für viele Aspekte der Stadtentwicklung und des Umweltschutzes von entscheidender Bedeutung.Die genaue Klassifizierung der Bodenbedeckung ist eine Herausforderung. Die Verbesserung der Bodenbedeckungsklassifizierung ist ein aktuelles Thema. Sie wird für viele Anwendungen benötigt, z. B. für die Kartierung der Bodennutzung und -bedeckung, die Umweltüberwachung, die Bewirtschaftung natürlicher Ressourcen, die Stadtplanung und -verwaltung sowie die Erkennung von Veränderungen. Anschließend wurde eine Reihe von Methoden untersucht, um verschiedene Klassifikatoren zu kombinieren.

Brukervurderinger av Klassifikatoren des maschinellen Lernens &Klassifikator-Beispiele



Finn lignende bøker
Boken Klassifikatoren des maschinellen Lernens &Klassifikator-Beispiele finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.