Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
It also addresses higher-order diffusion tensor imaging, third-order symmetric and traceless tensors in liquid crystals, piezoelectric tensors, strong ellipticity for elasticity tensors, and higher-order tensors in quantum physics.
This book covers the experimental and theoretical study of convection in non-isothermal ferro-nanofluids (FNFs). Since FNFs are not transparent and magnetic fields are very sensitive to the shape of the boundary between magnetic and nonmagnetic media, special flow visualization techniques based on the use of thermo-sensitive liquid crystal films, infrared cameras, as well as local and integral temperature sensors are discussed in the book.This book considers several major configurations of convective chambers and the applied magnetic field. For each of them, the stability boundaries are determined theoretically and experimentally. The physical types of dominant instabilities and the characteristics of their interactions are subsequently established using linear and weakly non-linear hydrodynamic stability analyses and elements of bifurcation theory. The book also discusses the potential of using magnetically controlled ferro-nanofluids as a heat carrier in situations where heat removal by natural convection is not possible due to the lack of gravity (orbital stations) or extreme confinement (microelectronics). Researchers and practitioners working in the areas of fluid mechanics, hydrodynamic stability, and heat and mass transfer will benefit from this book.
This conference recounts some of the influential work in modeling and simulation for HPC systems and applications, identifies some of the major challenges, and outlines future research directions which we believe are critical to the HPC modeling and simulation community.
Rooted in classical mechanics, this book explores mechanical and electromagnetic processes occurring in Mechatronics, emphasizing theory, modeling, analysis, and control of gyroscopic devices, including advanced military applications.
The first of three volumes, this book is a basic introduction to classical mechanics, including fundamental principles, statics, and the geometry of masses, and a thorough discussion of kinematics. Benefits advanced undergraduate and graduate students.
This well structured book provides a systematic introduction to the theory of continuous-time descriptor linear systems. It aims to provide a relatively systematic introduction to the basic results in descriptor linear systems theory.
This text is the first of its kind to bring together both the thermomechanics and mathematical analysis of Reiner-Rivlin fluids and fluids of grades 2 and 3 in a single book. The first part of the book is devoted to a description of the mechanics, thermodynamics, and stability of flows of fluids of grade 2 and grade 3.
This monograph provides a complete and up-to-date examination of rigid body dynamics using a Lagrangian approach. All known integrable cases, which were previously scattered throughout the literature, are collected here for convenient reference. Also contained are particular solutions to diverse problems treated within rigid body dynamics.The first seven chapters introduce the elementary dynamics of the rigid body and its main problems. A full historical account of the discovery and development of each of the integrable cases is included as well. Instructors will find this portion of the book well-suited for an undergraduate course, having been formulated by the author in the classroom over many years.The second part includes more advanced topics and some of the author's original research, highlighting several unique methods he developed that have led to significant results. Some of the specific topics covered include the twelve known solutions of the equations of motion in the classical problem, which has not previously appeared in English before; a collection of completely new integrable cases; and the motion of a rigid body around a fixed point under the action of an asymmetric combination of potential and gyroscopic forces.Rigid Body Dynamics will appeal to researchers in the area as well as those studying dynamical and integrable systems theory.
This monograph examines the stability of various coupled systems with local Kelvin-Voigt damping. The development of this area is thoroughly reviewed along with the authors' contributions. New results are featured on the fundamental properties of solutions of linear transmission evolution PDEs involving Kelvin-Voigt damping, with special emphasis on the asymptotic behavior of these solutions. The vibrations of transmission problems are highlighted as well, making this a valuable resource for those studying this active area of research. The book begins with a brief description of the abstract theory of linear evolution equations with a particular focus on semigroup theory. Different types of stability are also introduced along with their connection to resolvent estimates. After this foundation is established, different models are presented for uni-dimensional and multi-dimensional linear transmission evolution partial differential equations with Kelvin-Voigt damping. Stabilization of Kelvin-Voigt Damped Systems will be a useful reference for researchers in mechanics, particularly those interested in the study of control theory of PDEs.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.