Utvidet returrett til 31. januar 2025

Bøker i CIMAT Lectures in Mathematical Sciences-serien

Filter
Filter
Sorter etterSorter Serierekkefølge
  • av Gerardo Arizmendi Echegaray
    2 030,-

    This volume is devoted to various aspects of Alexandrov Geometry for those wishing to get a detailed picture of the advances in the field. It contains enhanced versions of the lecture notes of the two mini-courses plus those of one research talk given at CIMAT.Peter Petersen's part aims at presenting various rigidity results about Alexandrov spaces in a way that facilitates the understanding by a larger audience of geometers of some of the current research in the subject. They contain a brief overview of the fundamental aspects of the theory of Alexandrov spaces with lower curvature bounds, as well as the aforementioned rigidity results with complete proofs.The text from Fernando Galaz-Garcia's minicourse was completed in collaboration with Jesus Nunez-Zimbron. It presents an up-to-date and panoramic view of the topology and geometry of 3-dimensional Alexandrov spaces, including the classification of positively and non-negatively curved spaces and the geometrization theorem. They also present Lie group actions and their topological and equivariant classifications as well as a brief account of results on collapsing Alexandrov spaces.Jesus Nunez-Zimbron's contribution surveys two recent developments in the understanding of the topological and geometric rigidity of singular spaces with curvature bounded below.

  • av Gerardo Hernandez-Duenas
    1 223 - 1 452,-

    This volume proposes an integral approach to studying the geophysics of Earth. It is motivated by a variety of phenomena from nature with deep and direct impacts in our lives. Such events may evolve across a large range of spatial and time scales and may be observed in the ocean, the atmosphere, the volcanic surface as well as underground.The physical laws dictating the evolution of such phenomena lead to the unifying theme of this manuscript, that is, the mathematical and computational modeling of flows and waves. Consequently, the underlying models are given in terms of Partial Differential Equations (PDEs) whose solutions are approximated using numerical methods, thus providing simulations of the aforementioned phenomena, as well as the appropriate geophysical validation and interpretation.

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.