Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
On 14 September 2015, after 50 years of searching,gravitational waves were detected for the first time and astronomy changed forever.
"An exploration of the transformative ways in which nature has inspired the technological advancement of humankind. Biomimetics literally means emulating biology and in a broader sense the term covers technological advances where the original inspiration came from nature"--
Music is shaped by the science of sound. How can music - an artform - have anything to do with science? Yet there are myriad ways in which the two are intertwined, from the basics of music theory and the design of instruments to hi-fi systems and how the brain processes music. Science writer Andrew May traces the surprising connections between science and music, from the theory of sound waves to the way musicians use mathematical algorithms to create music. The most obvious impact of science on music can be seen in the way electronic technology has revolutionised how we create, record and listen to music. Technology has also provided new insights into the effects that different music has on the brain, to the extent that some algorithms can now predict our reactions with uncanny accuracy, which raises a worrying question: how long will it be before AI can create music on a par with humans?
The ultimate non-technical guide to the fast-developing world of quantum computing Computer technology has improved exponentially over the last 50 years. But the headroom for bigger and better electronic solutions is running out. Our best hope is to engage the power of quantum physics. 'Quantum algorithms' had already been written long before hardware was built. These would enable, for example, a quantum computer to exponentially speed up an information search, or to crack the mathematical trick behind internet security. However, making a quantum computer is incredibly difficult. Despite hundreds of laboratories around the world working on them, we are only just seeing them come close to 'supremacy' where they can outperform a traditional computer. In this approachable introduction, Brian Clegg explains algorithms and their quantum counterparts, explores the physical building blocks and quantum weirdness necessary to make a quantum computer, and uncovers the capabilities of the current generation of machines.
The quest to find a theory of quantum gravity that could potentially explain everything.
Dreams, schemes and opportunity as space opens for tourism and commerce.
The ground-breaking science behind ambitious new schemes for restoring lost natural systems
A journey through the history and science of epidemics and pandemics - from measles to coronavirus.
CERN and the Higgs boson hit the headlines and made particle physics exciting for non-scientists - here's the inside story
New for Icon's Hot Science series - a startling insight into the data that runs our lives.
Getting to the heart of the Artificial Intelligence debate.
The cutting-edge science that will revolutionise the way we prevent disease
Is Earth reallydoomed to be destroyed by a cosmic catastrophe?
In 2003, Russian physicists Andre Geim and Konstantin Novoselov found a way to produce graphene - the thinnest substance in the world - by using sticky tape to separate an atom-thick layer from a block of graphite. Their efforts would win the 2010 Nobel Prize for Physics, and now the applications of graphene and other 'two-dimensional' substances form a worldwide industry. Graphene is far stronger than steel, a far better conductor than any metal, and able to act as a molecular sieve to purify water. Electronic components made from graphene are a fraction of the size of silicon microchips and can be both flexible and transparent, making it possible to build electronics into clothing, produce solar cells to fit any surface, or even create invisible temporary tattoos that monitor your health. Ultra-thin materials give us the next big step forward since the transistor revolutionised electronics. Get ready for the graphene revolution.
The mysterious phenomena that could unlock the secrets of the universe.
The first title in Icon's new Hot Science series, exploring the cutting edge of modern science.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.