Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Provides an historical description of past efforts in national missile defenses to understand the technical difficulties involved. The book also explains how national security concerns, the evolving international environment, and the complexities of US politics have affected the story.
Contains an account of numerical solutions of differential equations of elementary problems of Physics using Euler and 2nd order Runge-Kutta methods and Mathematica 6.0. The problems are motion under constant force, motion under Hooke's law force, and motion under a combination of Hooke's law force and a velocity dependent damping force.
Lissajous Figures are produced by combining two oscillations at right angles to each other. The figures, drawn by mechanical devices called Harmonographs, have scientific uses, but are also enjoyed for their own beauty. This book is intended for people who enjoy physics or art or both.
Electric glow discharges (glows) can be found almost everywhere, from atmospheric electricity to modern plasma technologies, and have long been the object of research. The main purpose of this book is to provide simple illustrations of the basic physical mechanisms and principles that determine the properties of electric glow discharges.
This book presents simple interdisciplinary stochastic models meant as a gentle introduction to the field of non-equilibrium statistical physics. It focuses on the analysis of two-state models with cooperative effects, which are versatile enough to be applied to many physical and social systems. The book also explores a variety of mathematical techniques to solve the master equations that govern these models: matrix theory, empty-interval methods, mean field theory, a quantum approach, and mapping onto classical Ising models. The models discussed are at the confluence of nanophysics, biology, mathematics, and the social sciences and provide a pedagogical path toward understanding the complex dynamics of particle self-assembly with the tools of statistical physics.
In the field of particle and astrophysics, one of the major unresolved problems is to understand the nature and properties of dark matter, which constitutes almost 80% of the matter of the universe. This book gives a pedagogical introduction to the field of dark matter in general, and in particular to the model building perspective.
While neutron halos were discovered 30 years ago, this is the first book written on the subject of this exotic form of nuclei that typically contain many more neutrons than stable isotopes of those elements. It provides an introductory description of the halo and outlines the discovery and evidence for its existence. It also discusses different theoretical models of the halo's structure as well as models and techniques in reaction theory that have allowed us to study the halo. This is written at a level accessible to graduate students starting a PhD in nuclear physics. Halo nuclei are an exotic form of atomic nuclei that contain typically many more neutrons than stable isotopes of those elements. To give you a famous example, an atom of the element lithium has three electrons orbiting a nucleus with three protons and, usually, either 3 or 4 neutrons. The difference in the number of neutrons gives us two different isotopes of lithium, Li6 and Li7. But if you keep adding neutrons to the nucleus you will eventually reach Li11, with still 3 protons (that means it's lithium) but with 8 neutrons. This nucleus is so neutron-rich that the last two are very weakly bound to the rest of the nucleus (a Li9 core). What happens is a quantum mechanical effect: the two outer neutrons float around beyond the rest of the nuclear core at a distance that is beyond the range of the force that is holding them to the core. This is utterly counterintuitive. It means the nucleus looks like a core plus extended diffuse cloud of neutron probability: the halo. The author of the book, Jim Al-Khalili, is a theoretician who published some of the key papers on the structure of the halo in the mid and late 90s and was the first to determine its true size. This monograph is based on review articles he has written on the mathematical models used to determine the halo structure and the reactions used to model that structure.
In the last few years, several "bottom-up" and "top-down" synthesis routes have been developed to produce tailored hybrid nanoparticles (HNPs). This book provides a new insight into one of the most promising "bottom-up" techniques, based on a practical magnetron-sputtering inert-gas-condensation method. A modified magnetron-sputtering-based inert-gas-condensation (MS-IGC) system is presented, and its performances under different conditions are evaluated. Designed for graduate students, researchers in physics, materials science, biophysics and related fields, and process engineers, this new resource fills a critical need to understand the fundamentals behind the design and tailoring of the nanoparticles produced by the MS-IGC method. It shows that the morphology, the size and the properties of the nanoparticles can be modulated by tuning the deposition parameters such as the energy, the cooling rate, and the collision and coalescence processes experienced by the nanoparticles during their formation. The mechanisms of formation of different HNPs are suggested, combining the physico-chemical properties of the materials with the experimental conditions. This book illustrates the potential of MS-IGC method to synthesize multifunctional nanoparticles and nanocomposites with accurate control on their morphology and structure. However, for a better understanding of HNPs formation, further improvements in characterization methods of aggregation zone conditions are needed. In addition, the optimization of the yield and harvesting process of HNPs is essential to make this method sufficiently attractive for large-scale production.
This book provides a set of theoretical and numerical tools useful for the study of wave propagation in metamaterials and photonic crystals. While concentrating on electromagnetic waves, most of the material can be used for acoustic (or quantum) waves. For each presented numerical method, numerical code written in MATLAB(R) is presented. The codes are limited to 2D problems and can be easily translated in Python or Scilab, and used directly with Octave as well.
Searching for Dark Matter with Cosmic Gamma Rays summarizes the evidence for dark matter and what we can learn about its particle nature using cosmic gamma rays. It has almost been 100 years since Fritz Zwicky first detected hints that most of the matter in the Universe that doesn't directly emit or reflect light. Since then, the observational evidence for dark matter has continued to grow. Dark matter may be a new kind of particle that is governed by physics beyond our Standard Model of particle physics. In many models, dark matter annihilation or decay produces gamma rays. There are a variety of instruments observing the gamma-ray sky from tens of MeV to hundreds of TeV. Some make deep, focused observations of small regions, while others provide coverage of the entire sky. Each experiment offers complementary sensitivity to dark matter searches in a variety of target sizes, locations, and dark matter mass scales. We review results from recent gamma-ray experiments including anomalies some have attributed to dark matter. We also discuss how our gamma-ray observations complement other dark matter searches and the prospects for future experiments.
This book examines the lives and contributions of American women physicists who were active in the years following World War II, during the middle decades of the 20th century. It covers the strategies they used to survive and thrive in a time where their gender was against them. The percentage of PhD's in physics has risen for 6% in 1983 to 20% in 2012 (an all-time high for women). By understanding the history of women in physics, these gains can continue. It discusses to major classes of women physicists; those who worked on military projects, and those who worked in industrial laboratories and at universities largely in the late 1940s and 1950s. While it includes minimal discussion of physics and physicists in the 1960s and later, this book focuses on the challenges and successes of women physicists in the years immediately following World War II and before the eras of affirmative actions and the use of the personal computer.
This book is a rigorous but concise macroscopic description of the interaction between electromagnetic radiation and structures containing graphene sheets (two-dimensional structures). It presents canonical problems with translational invariant geometries, in which the solution of the original vectorial problem can be reduced to the treatment of two scalar problems, corresponding to two basic polarization modes. The book includes computational problems and makes use of the Python programming language to make numerical calculations accessible to any science student. Many figures within are accompanied by Python scripts.
It is generally acknowledged that modeling and simulation are preferred alternatives to trial and error approaches to semiconductor fabrication in the present environment, where the cost of process runs and associated mask sets is increasing exponentially with successive technology nodes. Hence, accurate physical device simulation tools are essential to accurately predict device and circuit performance. Accurate thermal modelling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modelling methods that must be employed in order to determine a device's temperature profile.
This book provides detailed and current information on using fullerenes (bucky-balls) in photodynamic therapy (PDT), one of the most actively studied applications of photonic science in healthcare. This will serve as a useful source for researchers working in photomedicine and nanomedicine, especially those who are investigating PDT for cancer treatment and infectious disease treatment. The book runs the gamut from an introduction to the history and chemistry of fullerenes and some basic photochemistry, to the application of fullerenes as photosensitizers for cancer and antimicrobial inactivation.
This book provides a theoretical background in computation to scientists who use computational methods. It explains how computing is used in the natural sciences, and provides a high-level overview of those aspects of computer science and software engineering that are most relevant for computational science. The focus is on concepts, results, and applications, rather than on proofs and derivations. The unique feature of this book is that it "connects the dots between computational science, the theory of computation and information, and software engineering. The book should help scientists to better understand how they use computers in their work, and to better understand how computers work. It is meant to compensate a bit for the general lack of any formal training in computer science and information theory. Readers will learn something they can use throughout their careers.
The study of dark matter, in both astrophysics and particle physics, has emerged as one of the most active and exciting topics of research in recent years. This book reviews the history behind the discovery of missing mass (or unseen mass) in the Universe, and ties this into the proposed extensions to the Standard Model of Particle Physics (such as Supersymmetry), which were being proposed within the same time frame. This book is written as an introduction to these problems at the forefront of astrophysics and particle physics, with the goal of conveying the physics of dark matter to beginning undergraduate majors in scientific fields. The book goes onto describe existing and upcoming experiments and techniques, which will be used to detect dark matter either directly on indirectly.
The Nuclear Nonproliferation Treaty (NPT) has been the principal legal barrier to prevent the spread of nuclear weapons for the past forty-five years. It promotes the peaceful uses of nuclear technology and insures, through the application of safeguards inspections conducted by the International Atomic Energy Agency (IAEA), that those technologies are not being diverted toward the production of nuclear weapons. It is also the only multinational treaty that obligates the five nuclear weapons states that are party to the treaty (China, France, Great Britain, Russia, and the United States) to pursue nuclear disarmament measures. Though there have been many challenges over the years, most would agree that the treaty has largely been successful. However, many are concerned about the continued viability of the NPT. The perceived slow pace of nuclear disarmament, the interest by some countries to consider a weapons program while party to the treaty, and the funding and staffing issues at the IAEA, are all putting considerable strain on the treaty. This manuscript explores those issues and offers some possible solutions to ensure that the NPT will survive effectively for many years to come.
This book covers the technology of switching or modulating light in semiconductor optical waveguides. Currently a key function for optical communications systems is the conversion of data from an electrical signal to an optical signal for transmission in very low loss optical fibres and the converse process of optical to electrical conversion the O/E/O data conversion. This conversion between electronic and photonic signals imposes an energy consumption overhead on optical communication systems. So many research workers have been attracted to ultrafast all-optical switching of data in different formats. As a way of introduction to all-optical switching in semiconductor waveguides the book covers the electro-optic effect, electroabsorption and electrorefraction; effects that can be used in semiconductor optical modulation devices. But the book focuses on all-optical switching using second and third order optical nonlinearities in AlGaAs optical waveguides. It covers a variety of device configurations including integrated nonlinear couplers and Mach-Zehnder interferometers. Further, it provides design software in suit of Mathematica notebooks that can be used to explore the device design.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.