Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
In the mathematical practice, the Baire category method is a tool for establishing the existence of a rich array of generic structures. However, in mathematics, the Baire category method is also behind a number of fundamental results such as the Open Mapping Theorem or the Banach Steinhaus Boundedness Principle. This volume brings the Baire category method to another level of sophistication via the internal version of the set-theoretic forcing technique. It is the first systematic account of applications of the higher forcing axioms with the stress on the technique of building forcing notions rather that on the relationship between different forcing axioms or their consistency strengths.
This volume contains three expanded lecture notes from the program Scalar Curvature in Manifold Topology and Conformal Geometry that was held at the Institute for Mathematical Sciences from 1 November to 31 December 2014. The first chapter surveys the recent developments on the fourth-order equations with negative exponent from geometric points of view such as positive mass theorem and uniqueness results. The next chapter deals with the recent important progress on several conjectures such as the existence of non-flat smooth hyper-surfaces and Serrin's over-determined problem. And the final chapter induces a new technique to handle the equation with critical index and the sign change coefficient as well as the negative index term. These topics will be of interest to those studying conformal geometry and geometric partial differential equations.
Understanding how a single shape can incur a complex range of transformations, while defining the same perceptually obvious figure, entails a rich and challenging collection of problems, at the interface between applied mathematics, statistics and computer science. The program on Mathematics of Shapes and Applications, was held at the Institute for Mathematical Sciences at the National University of Singapore in 2016. It provided discussions on theoretical developments and numerous applications in computer vision, object recognition and medical imaging.The analysis of shapes is an example of a mathematical problem directly connected with applications while offering deep open challenges to theoretical mathematicians. It has grown, over the past decades, into an interdisciplinary area in which researchers studying infinite-dimensional Riemannian manifolds (global analysis) interact with applied mathematicians, statisticians, computer scientists and biomedical engineers on a variety of problems involving shapes.The volume illustrates this wealth of subjects by providing new contributions on the metric structure of diffeomorphism groups and shape spaces, recent developments on deterministic and stochastic models of shape evolution, new computational methods manipulating shapes, and new statistical tools to analyze shape datasets. In addition to these contributions, applications of shape analysis to medical imaging and computational anatomy are discussed, leading, in particular, to improved understanding of the impact of cognitive diseases on the geometry of the brain.
In the 25 years since their introduction, Higgs bundles have seen a surprising number of interactions within different areas of mathematics and physics. There is a recent surge of interest following Ngô Bau Châu's proof of the Fundamental Lemma and the work of Kapustin and Witten on the Geometric Langlands program. The program on The Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles, was held at the Institute for Mathematical Sciences at the National University of Singapore during 2014. It hosted a number of lectures on recent topics of importance related to Higgs bundles, and it is the purpose of this volume to collect these lectures in a form accessible to graduate students and young researchers interested in learning more about this field.
This volume is an outgrowth of the program Modular Representation Theory of Finite and p-Adic Groups held at the Institute for Mathematical Sciences at National University of Singapore during the period of 1-26 April 2013.
Based on lectures given at the highly successful three-week Summer School on Geometry, Topology and Dynamics of Character Varieties held at the National University of Singapore's Institute for Mathematical Sciences in July 2010. Suitable for students and researchers, this title includes hyperbolic structures on surfaces and their degenerations.
The Institute for Mathematical Sciences at the National University of Singapore hosted a two-month research program on Mathematical Theory and Numerical Methods for Computational Materials Simulation and Design - from 1 July to 31 August 2009. This title collects four expanded lecture notes from the program along with self-contained tutorials.
This volume is based on lectures given during the program Complex Quantum Systems held at the National University of Singapore's Institute for Mathematical Sciences from 17 February to 27 March 2010. It guides the reader through two introductory expositions on large Coulomb systems to five of the most important developments in the field: derivation of mean field equations, derivation of effective Hamiltonians, alternative high precision methods in quantum chemistry, modern many body methods originating from quantum information, and - the most complex - semirelativistic quantum electrodynamics. These introductions are written by leaders in their fields; amongst them are Volker Bach, Rafael Benguria, Thomas Chen, and Jan Philip Solovej. Together, they fill a gap between current textbooks and the vast modern literature on complex quantum systems.
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2012 Asian Initiative for Infinity Logic Summer School. The major topics cover set-theoretic forcing, higher recursion theory, and applications of set theory to C*-algebra. This volume offers a wide spectrum of ideas and techniques introduced in contemporary research in the field of mathematical logic to students, researchers and mathematicians.
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2012 Asian Initiative for Infinity Logic Summer School. The major topics cover set-theoretic forcing, higher recursion theory, and applications of set theory to C*-algebra. This volume offers a wide spectrum of ideas and techniques introduced in contemporary research in the field of mathematical logic to students, researchers and mathematicians.
This volume is based on the talks given at the Workshop on Infinity and Truth held at the Institute for Mathematical Sciences, National University of Singapore, from 25 to 29 July 2011. The chapters are by leading experts in mathematical and philosophical logic that examine various aspects of the foundations of mathematics. The theme of the volume focuses on two basic foundational questions: (i) What is the nature of mathematical truth and how does one resolve questions that are formally unsolvable within the Zermelo Fraenkel Set Theory with the Axiom of Choice, and (ii) Do the discoveries in mathematics provide evidence favoring one philosophical view over others? These issues are discussed from the vantage point of recent progresses in foundational studies. The final chapter features questions proposed by the participants of the Workshop that will drive foundational research. The wide range of topics covered here will be of benefit to students, researchers and mathematicians interested in the foundations of mathematics.
This volume consists of introductory lectures on the topics in the new and rapidly developing area of toric homotopy theory, and its applications to the current research in configuration spaces and braids, as well as to more applicable mathematics such as fr-codes and robot motion planning.The book starts intertwining homotopy theoretical and combinatorial ideas within the remits of toric topology and illustrates an attempt to classify in a combinatorial way polytopes known as fullerenes, which are important objects in quantum physics, quantum chemistry and nanotechnology. Toric homotopy theory is then introduced as a further development of toric topology, which describes properties of Davis-Januszkiewicz spaces, moment-angle complexes and their generalizations to polyhedral products. The book also displays the current research on configuration spaces, braids, the theory of limits over the category of presentations and the theory of fr-codes. As an application to robotics, the book surveys topological problems relevant to the motion planning problem of robotics and includes new results and constructions, which enrich the emerging area of topological robotics.The book is at research entry level addressing the core components in homotopy theory and their important applications in the sciences and thus suitable for advanced undergraduate and graduate students.
This volume is to pique the interest of many researchers in the fields of infinite dimensional analysis and quantum probability. These fields have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. These fields are rather wide and are of a strongly interdisciplinary nature. For such a purpose, we strove to bridge among these interdisciplinary fields in our Workshop on IDAQP and their Applications that was held at the Institute for Mathematical Sciences, National University of Singapore from 3-7 March 2014. Readers will find that this volume contains all the exciting contributions by well-known researchers in search of new directions in these fields.
The contents in this volume are based on the program Sets and Computations that was held at the Institute for Mathematical Sciences, National University of Singapore from 30 March until 30 April 2015. This special collection reports on important and recent interactions between the fields of Set Theory and Computation Theory. This includes the new research areas of computational complexity in set theory, randomness beyond the hyperarithmetic, powerful extensions of Goodstein's theorem and the capturing of large fragments of set theory via elementary-recursive structures.Further chapters are concerned with central topics within Set Theory, including cardinal characteristics, Fraïssé limits, the set-generic multiverse and the study of ideals. Also Computation Theory, which includes computable group theory and measure-theoretic aspects of Hilbert's Tenth Problem. A volume of this broad scope will appeal to a wide spectrum of researchers in mathematical logic.
Mathemusical Conversations celebrates the understanding of music through mathematics, and vice versa.
This book is a brief and focused introduction to the reverse mathematics and computability theory of combinatorial principles, an area of research which has seen a particular surge of activity in the last few years. It provides an overview of some fundamental ideas and techniques, and enough context to make it possible for students with at least a basic knowledge of computability theory and proof theory to appreciate the exciting advances currently happening in the area, and perhaps make contributions of their own. It adopts a case-study approach, using the study of versions of Ramsey's Theorem (for colorings of tuples of natural numbers) and related principles as illustrations of various aspects of computability theoretic and reverse mathematical analysis. This book contains many exercises and open questions.
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2010 and 2011 Asian Initiative for Infinity Logic Summer Schools. The major topics covered set theory and recursion theory, with particular emphasis on forcing, inner model theory and Turing degrees, offering a wide overview of ideas and techniques introduced in contemporary research in the field of mathematical logic.
The Institute for Mathematical Sciences at the National University of Singapore hosted a Spring School on Fluid Dynamics and Geophysics of Environmental Hazards from 19 April to 2 May 2009. This volume contains the content of the nine short lecture courses given at this School, with a focus mainly on tropical cyclones, tsunamis, monsoon flooding and atmospheric pollution, all within the context of climate variability and change.The book provides an introduction to these topics from both mathematical and geophysical points of view, and will be invaluable for graduate students in applied mathematics, geophysics and engineering with an interest in this broad field of study, as well as for seasoned researchers in adjacent fields.
Includes exposition articles by the tutorial speakers on the foundations of Gabor analysis, subband filters and wavelet algorithms, and operator-theoretic interpolation of wavelets and frames. This volume presents research papers on Gabor analysis, written by specialists in their respective areas.
Covers topics including dynamics in different models of domain coarsening and coagulation and their mathematical analysis in material sciences and a mathematical and computational study for quantized vortices in the celebrated Ginzburg-Landau models of superconductivity and the mean field Gross-Pitaevskii equations of superfluidity.
Presents a compilation of the research by various scientists in the area of modelling and multiscale simulation. This volume features articles that cover a major project and documents how computational methodology, mathematical modelling, high performance computing and simulation are combined in a multiscale scheme to solve a variety of problems.
Contains contributions from many of the mathematicians at the forefront of this effort.
Quantum theory is one of the most important intellectual developments in the early twentieth century. This volume arose from a two-month workshop held at the Institute for Mathematical Sciences at the National University of Singapore in July-September 2008 on mathematical physics, focusing specifically on operator algebras in quantum theory.
The Institute for Mathematical Sciences at the National University of Singapore hosted a research program on Mathematical Modeling of Infectious Diseases: Dynamics and Control from 15 August to 9 October 2005. This volume is a collection of three lecture notes of those tutorials.
Contains contributions, expanded from invited lectures given at the conference held at the National University of Singapore, 9-11 January 2006, on the occasion of Roger E Howe's 60th birthday.
One of the priority areas of ICSU (The International Council for Science) is Natural and Human-Induced Environmental Hazards and Disasters. This volume provides an indepth graduate-level introduction to the fluid dynamics and geophysics of hazards such as tropical cyclones, flooding, atmospheric pollution and tsunamis.
Suitable for those seeking to familiarize themselves with research in braid groups, configuration spaces and their applications. This title takes the reader through the fundamental theory and on to research and applications in the fields such as astrophysics, cryptography and robotics.
Random matrix theory has a long history, beginning in the first instance in multivariate statistics. It was used by Wigner to supply explanations for the important regularity features of the apparently random dispositions of the energy levels of heavy nuclei. This title contains chapters which serve as an introduction into this area of research.
Showcases lecture notes collected from tutorials presented at the Workshop on Moving Interface Problems and Applications in Fluid Dynamics that was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences, National University of Singapore. This title is suitable for graduate students and researchers keen in the field.
The Institute for Mathematical Sciences at the National University of Singapore hosted a research program on "Representation Theory of Lie Groups" from July 2002 to January 2003. As part of the program, tutorials for graduate students and junior researchers were given by leading experts in the field. This invaluable volume collects the expanded lecture notes of those tutorials. The topics covered include uncertainty principles for locally compact abelian groups, fundamentals of representations of p-adic groups, the Harish-Chandra-Howe local character expansion, classification of the square-integrable representations modulo cuspidal data, Dirac cohomology and Vogan's conjecture, multiplicity-free actions and Schur-Weyl-Howe duality.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.