Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
The final part of a three-volume set providing a modern account of the representation theory of finite dimensional associative algebras over an algebraically closed field. The subject is presented from the perspective of linear representations of quivers and homological algebra. This volume provides an introduction to the representation theory of representation-infinite tilted algebras from the point of view of the time-wild dichotomy. Also included is a collection of selected results relating to the material discussed in all three volumes. The book is primarily addressed to a graduate student starting research in the representation theory of algebras, but will also be of interest to mathematicians in other fields. Proofs are presented in complete detail, and the text includes many illustrative examples and a large number of exercises at the end of each chapter, making the book suitable for courses, seminars, and self-study.
This work has arisen from lecture courses given by the authors on important topics within functional analysis. The authors, who are all leading researchers, give introductions to their subjects at a level ideal for beginning graduate students, and others interested in the subject. The collection has been carefully edited so as to form a coherent and accessible introduction to current research topics. The first chapter by Professor Dales introduces the general theory of Banach algebras, which serves as a background to the remaining material. Dr Willis then studies a centrally important Banach algebra, the group algebra of a locally compact group. The remaining chapters are devoted to Banach algebras of operators on Banach spaces: Professor Eschmeier gives all the background for the exciting topic of invariant subspaces of operators, and discusses some key open problems; Dr Laursen and Professor Aiena discuss local spectral theory for operators, leading into Fredholm theory.
This 2004 introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. Various important settings, such as group algebras, Lie algebras, and quantum groups, are sketched at the outset to describe typical problems and provide motivation. The text then develops and illustrates the standard ingredients of the theory: e.g., skew polynomial rings, rings of fractions, bimodules, Krull dimension, linked prime ideals. Recurring emphasis is placed on prime ideals, which play a central role in applications to representation theory. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. Material includes the basic types of quantum groups, which then serve as test cases for the theory developed.
A lucid and concise account of the classification of algebraic surfaces, but expressed simply in the language of modern topology and sheaf theory. The ample number of exercises succeed both in giving the flavour of the extraordinary wealth of examples in the classical subject, and in equipping the reader with most of the techniques needed for research.
The prime number theorem is indisputably one of the great classical theorems of mathematics. Suitable for advanced undergraduates and beginning graduates, this textbook demonstrates how the tools of analysis can be used in number theory to attack a famous problem.
This book is an introduction, for mathematics students, to the theories of information and codes. They are usually treated separately but, as both address the problem of communication through noisy channels (albeit from different directions), the authors have been able to exploit the connection to give a reasonably self-contained treatment, relating the probabilistic and algebraic viewpoints. The style is discursive and, as befits the subject, plenty of examples and exercises are provided. Some examples and exercises are provided. Some examples of computer codes are given to provide concrete illustrations of abstract ideas.
This textbook provides an introduction to general relativity for mathematics undergraduates or graduate physicists. After a review of Cartesian tensor notation and special relativity the concepts of Riemannian differential geometry are introducted. More emphasis is placed on an intuitive grasp of the subject and a calculational facility than on a rigorous mathematical exposition. General relativity is then presented as a relativistic theory of gravity reducing in the appropriate limits to Newtonian gravity or special relativity. The Schwarzchild solution is derived and the gravitational red-shift, time dilation and classic tests of general relativity are discussed. There is a brief account of gravitational collapse and black holes based on the extended Schwarzchild solution. Other vacuum solutions are described, motivated by their counterparts in linearised general relativity. The book ends with chapters on cosmological solutions to the field equations. There are exercises attached to each chapter, some of which extend the development given in the text.
The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. This book provides, for mathematicians, an introduction to this field of physics in a language and from a viewpoint which such a reader should find congenial. Physicists should also gain from reading this book a sound grasp of various aspects of the theory, some of which have not been particularly emphasised in the existing review literature. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the 'Klein' paradox, particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalisation of the stress tensor. The style is pedagogic rather than formal; some knowledge of general relativity and differential geometry is assumed, but the author does supply background material on functional analysis and quantum field theory as required. The book arose from a course taught to graduate students and could be used for self-study or for advanced courses in relativity and quantum field theory.
This 2003 book investigates the interplay between algebra and geometry is a beautiful area of mathematical investigation. Advances in computing and algorithms make it possible to tackle many classical problems in a down-to-earth and concrete fashion. This opens new vistas and allows us to pose, study and solve problems previously out of reach.
Over the last 25 years K-theory has become an integrated part of the study of C*-algebras. This book gives an elementary introduction to this interesting and rapidly growing area of mathematics. Fundamental to K-theory is the association of a pair of Abelian groups, K0(A) and K1(A), to each C*-algebra A. These groups reflect the properties of A in many ways. This book covers the basic properties of the functors K0 and K1 and their interrelationship. Applications of the theory include Elliott's classification theorem for AF-algebras, and it is shown that each pair of countable Abelian groups arises as the K-groups of some C*-algebra. The theory is well illustrated with 120 exercises and examples, making the book ideal for beginning graduate students working in functional analysis, especially operator algebras, and for researchers from other areas of mathematics who want to learn about this subject.
In its first six chapters this 2006 text seeks to present the basic ideas and properties of the Jacobi elliptic functions as an historical essay, an attempt to answer the fascinating question: 'what would the treatment of elliptic functions have been like if Abel had developed the ideas, rather than Jacobi?' Accordingly, it is based on the idea of inverting integrals which arise in the theory of differential equations and, in particular, the differential equation that describes the motion of a simple pendulum. The later chapters present a more conventional approach to the Weierstrass functions and to elliptic integrals, and then the reader is introduced to the richly varied applications of the elliptic and related functions. Applications spanning arithmetic (solution of the general quintic, the functional equation of the Riemann zeta function), dynamics (orbits, Euler's equations, Green's functions), and also probability and statistics, are discussed.
This introductory account of commutative algebra is aimed at students with a background only in basic algebra. It is thus suitable for first-year graduate students and advanced undergraduates, with a style which is throughout rigorous but concrete. This new edition contains additional chapters on regular sequences and on Cohen-Macaulay rings.
One-dimensional dynamics owns many deep results and avenues of active mathematical research. This book provides glimpses into the subject, and novel connections are drawn with other research areas, with the hope that the results presented illuminate the beauty and excitement of the field. Much of this material is covered nowhere else in textbook format.
This text concentrates on the typical methods of modern set theory: transfinite induction, Zorn's Lemma, the Continuum Hypothesis, Martin's Axiom, the Diamond Principle and elements of forcing. It supplies students and researchers with the tools most applicable to other areas of pure mathematics, such as abstract geometry, real analysis, topology, and algebra.
The theory of p-adic and classic modular forms, and the study of arithmetic and p-adic L-functions has proved to be a fruitful area of mathematics over the last decade. Professor Hida has given courses on these topics worldwide and here provides the reader with an elementary insight into the theory of L-functions.
Professor Retherford's aim in this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory, leading to an elementary proof of the Lidskij trace theorem. Many exercises and hints are included, and throughout the emphasis is on a user-friendly approach.
This book is essentially a self-contained introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. Parts of the book are suitable for a final year undergraduate course or for a master's level course.
The book is a self-contained introduction to the results and computational methods in classical invariant theory. It relies on minimal mathematical prerequisites, and can be read by advanced undergraduate or graduate students. A variety of innovations will also make the book of interest to specialists and researchers.
This book is based on a graduate course taught by the author at the University of Maryland. The work falls into two strands: first the elementary theory of Artin Braid groups is developed and the link between knot theory and the combinatorics of braid groups is discussed through Markov's theorem; this is followed by an investigation of polynomial maps.
This 2002 book is ideal for advanced undergraduate or beginning graduate students. The author first develops the necessary background in probability theory and Markov chains before applying it to study a range of randomised algorithms with important applications in optimisation and other problems in computing.
This is an introduction to logic and the axiomatization of set theory from a unique standpoint. Difficult points are presented in an engaging fashion and furthered by the aid of many exercises. Little previous knowledge of logic is required, only a background of standard undergraduate mathematics is assumed.
The focus of this book is the study of the noncommutative aspects of rings and modules, and the style will make it accessible to anyone with a background in basic abstract algebra. It can be used as a first-year graduate text or as a reference for advanced undergraduates.
Complex algebraic curves were developed in the nineteenth century. They have many fascinating properties and crop up in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired by most undergraduate courses in mathematics, Dr Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis. This book grew from a lecture course given by Dr Kirwan at Oxford University and will be an excellent companion for final year undergraduates and graduates who are studying complex algebraic curves.
This book presents a mathematical introduction to the theory of orthogonal wavelets and their uses in analysing functions and function spaces, both in one and in several variables. Starting with a detailed and self contained discussion of the general construction of one dimensional wavelets from multiresolution analysis, the book presents in detail the most important wavelets: spline wavelets, Meyer's wavelets and wavelets with compact support. It then moves to the corresponding multivariable theory and gives genuine multivariable examples. Wavelet decompositions in Lp spaces, Hardy spaces and Besov spaces are discussed and wavelet characterisations of those spaces are provided. Also included are some additional topics like periodic wavelets or wavelets not associated with a multiresolution analysis. This will be an invaluable book for those wishing to learn about the mathematical foundations of wavelets.
This text is a self contained treatment of expander graphs and in particular their explicit construction. Expander graphs are both highly connected but sparse, and besides their interest within combinatorics and graph theory, they also find various applications in computer science and engineering.
Algebraic geometry is, essentially, the study of the solution of equations and occupies a central position in pure mathematics. This short and readable introduction to algebraic geometry will be ideal for all undergraduate mathematicians coming to the subject for the first time. With the minimum of prerequisites, Dr Reid introduces the reader to the basic concepts of algebraic geometry including: plane conics, cubics and the group law, affine and projective varieties, and non-singularity and dimension. He is at pains to stress the connections the subject has with commutative algebra as well as its relation to topology, differential geometry, and number theory. The book arises from an undergraduate course given at the University of Warwick and contains numerous examples and exercises illustrating the theory.
The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.
The study of (special cases of) elliptic curves goes back to Diophantos and Fermat, and today it is still one of the liveliest centres of research in number theory. This book, which is addressed to beginning graduate students, introduces basic theory from a contemporary viewpoint but with an eye to the historical background. The central portion deals with curves over the rationals: the Mordell-Weil finite basis theorem, points of finite order (Nagell-Lutz) etc. The treatment is structured by the local-global standpoint and culminates in the description of the Tate-Shafarevich group as the obstruction to a Hasse principle. In an introductory section the Hasse principle for conics is discussed. The book closes with sections on the theory over finite fields (the 'Riemann hypothesis for function fields') and recently developed uses of elliptic curves for factoring large integers. Prerequisites are kept to a minimum; an acquaintance with the fundamentals of Galois theory is assumed, but no knowledge either of algebraic number theory or algebraic geometry is needed. The p-adic numbers are introduced from scratch, as is the little that is needed on Galois cohomology. Many examples and exercises are included for the reader. For those new to elliptic curves, whether they are graduate students or specialists from other fields, this will be a fine introductory text.
Potential theory is the broad area of mathematical analysis encompassing such topics as harmonic and subharmonic functions, the Dirichlet problem, harmonic measure, Green's functions, potentials and capacity. This is an introduction to the subject suitable for beginning graduate students, concentrating on the important case of two dimensions. This permits a simpler treatment than other books, yet is still sufficient for a wide range of applications to complex analysis; these include Picard's theorem, the Phragmen-Lindelof principle, the Koebe one-quarter mapping theorem and a sharp quantitative form of Runge's theorem. In addition there is a chapter on connections with functional analysis and dynamical systems, which shows how the theory can be applied to other parts of mathematics, and gives a flavour of some recent research. Exercises are provided throughout, enabling the book to be used with advanced courses on complex analysis or potential theory.
This book is an introduction to an important area of mathematics and mathematical physics. It is accessible to university students, but leads to topics of current research in the theory of harmonic maps. It is the first book on this subject at this level.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.