Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
In particular, the material of the chapters on continued fractions (Chapter 2), symplectic systems (Chapter 3), and discrete variational theory (Chapter 4) summarize recent literature. Similarly, the material on transforming Riccati equations presented in Chapter 3 gives a self-contained unification of various forms of Riccati equations.
In particular, the material of the chapters on continued fractions (Chapter 2), symplectic systems (Chapter 3), and discrete variational theory (Chapter 4) summarize recent literature. Similarly, the material on transforming Riccati equations presented in Chapter 3 gives a self-contained unification of various forms of Riccati equations.
This is because in social sciences the factors that cause variation in the measurements on the study variable for the population units can not be controlled, whereas in physical sciences these factors can be controlled, at least to some extent, through proper experimental design.
This is because in social sciences the factors that cause variation in the measurements on the study variable for the population units can not be controlled, whereas in physical sciences these factors can be controlled, at least to some extent, through proper experimental design.
This volume is dedicated to the use of lattice theory in module theory. Its main purpose is to present all module-theoretic results that can be proved by lattice theory only, and to develop the theory necessary to do so.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.