Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds. Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature.
This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology of non-compact manifolds such as Euclidean spaces, being the value groups for Whitehead torsion, the Siebemann end obstruction and the Wall finiteness and surgery obstructions. Some of the applications to topology are included, such as the obstruction theories for splitting homotopy equivalences and for fibering compact manifolds over the circle. Only elementary algebraic constructions are used, which are always motivated by topology. The material is accessible to a wide mathematical audience, especially graduate students and research workers in topology and algebra.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.