Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This book describes the ray tracing effects inside different quadric surfaces. Although numerically-specified surfaces and even non-uniform rational basis spline (NURBS) can be used for modeling such surfaces, for most practical EM applications, it is sufficient to model them as quadric surface patches and the hybrids thereof.
This mathematical formulation will help the EM designers to analyze and design of various quadratics and their hybrids, which can eventually lead to design of cloaking shells of arbitrary shapes.
This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications.
This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors.
Terahertz (THz) spectroscopy is an important tool for imaging in the field of biomedical engineering, due to the non-invasive, non-ionizing nature of terahertz radiation coupled with its propagation characteristics in water, which allows the operator to obtain high-contrast images of skin cancers, burns, etc.
Soft computing techniques are emerging as an important tool in solving design, performance and optimisation problems in electromagnetics. Soft Computing in Electromagnetics offers detailed discussion on the application of soft computing concepts in the field of metamaterial antennas, radar absorbers, transmission line characterisation and optimised radar absorbing material (RAM) and introduces implementation of soft computing tools in a relatively new area of metamaterials. The soft computing methods are used to optimise fault detection, electromagnetic propagation and path loss detection. The development of two CAD packages for design of metamaterial split ring resonators (SRR) and path-loss prediction is discussed. The concepts are explained with the help of algorithms and the corresponding software codes. Numerical examples and MATLAB codes are provided throughout the text to facilitate understanding.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.