Utvidet returrett til 31. januar 2024

Bøker av Benjamin Jaye

Filter
Filter
Sorter etterSorter Populære
  • av Benjamin Jaye
    1 147,-

    Fix $d\geq 2$, and $s\in (d-1,d)$. The authors characterize the non-negative locally finite non-atomic Borel measures $\mu $ in $\mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(\mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of measures with bounded $s$-Riesz transform is known. As an application, the authors give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator $(-\Delta )^\alpha /2$, $\alpha \in (1,2)$, in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions.

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.