Utvidet returrett til 31. januar 2024

Bøker av Benjamin Johnston

Filter
Filter
Sorter etterSorter Populære
  • av Aaron Jones, Benjamin Johnston & Christopher Kruger
    525,-

    Learning how to apply unsupervised algorithms on unlabeled datasets from scratch can be easier than you thought with this beginner's workshop, featuring interesting examples and activitiesKey Features Get familiar with the ecosystem of unsupervised algorithms Learn interesting methods to simplify large amounts of unorganized data Tackle real-world challenges, such as estimating the population density of a geographical areaBook DescriptionDo you find it difficult to understand how popular companies like WhatsApp and Amazon find valuable insights from large amounts of unorganized data? The Unsupervised Learning Workshop will give you the confidence to deal with cluttered and unlabeled datasets, using unsupervised algorithms in an easy and interactive manner.The book starts by introducing the most popular clustering algorithms of unsupervised learning. You'll find out how hierarchical clustering differs from k-means, along with understanding how to apply DBSCAN to highly complex and noisy data. Moving ahead, you'll use autoencoders for efficient data encoding.As you progress, you'll use t-SNE models to extract high-dimensional information into a lower dimension for better visualization, in addition to working with topic modeling for implementing natural language processing (NLP). In later chapters, you'll find key relationships between customers and businesses using Market Basket Analysis, before going on to use Hotspot Analysis for estimating the population density of an area.By the end of this book, you'll be equipped with the skills you need to apply unsupervised algorithms on cluttered datasets to find useful patterns and insights.What you will learn Distinguish between hierarchical clustering and the k-means algorithm Understand the process of finding clusters in data Grasp interesting techniques to reduce the size of data Use autoencoders to decode data Extract text from a large collection of documents using topic modeling Create a bag-of-words model using the CountVectorizerWho this book is forIf you are a data scientist who is just getting started and want to learn how to implement machine learning algorithms to build predictive models, then this book is for you. To expedite the learning process, a solid understanding of the Python programming language is recommended, as you'll be editing classes and functions instead of creating them from scratch.

  • - A New, Interactive Approach to Understanding Supervised Learning Algorithms, 2nd Edition
    av Benjamin Johnston, Ishita Mathur, Blaine Bateman & m.fl.
    480,-

    Cut through the noise and get real results with a step-by-step approach to understanding supervised learning algorithms

  • - Develop your practical skills and prepare to become a professional data analyst
    av Benjamin Johnston, Upom Malik & Matt Goldwasser
    465,-

    The Applied SQL Data Analytics Workshop is the ideal companion on your journey to extracting information from raw business data. Whether it's importing data, analyzing complex data types, or optimizing your queries, this book equips you with the skills you need to build your knowledge in data analysis with SQL.

  • - Perform fast and efficient data analysis with the power of SQL
    av Benjamin Johnston, Upom Malik & Matt Goldwasser
    956,-

    SQL for Data Analytics teaches everything you need to know to progress from basic SQL to identifying trends and creating compelling narratives with data. With this book, you will be able to look at data with the critical eye of an analytics professional and extract meaningful insights that will improve your business.

  • - Discover hidden patterns and relationships in unstructured data with Python
    av Aaron Jones, Benjamin Johnston & Christopher Kruger
    599,-

    Starting with the basics, Applied Unsupervised Learning with Python explains various techniques that you can apply to your data using the powerful Python libraries so that your unlabeled data reveals solutions to all your business questions.

  • - Use scikit-learn to build predictive models from real-world datasets and prepare yourself for the future of machine learning
    av Benjamin Johnston & Ishita Mathur
    525,-

    Applied Supervised Learning with Python provides you a rich understanding of machine learning, one of the most pursued topics in information science, and Python, one of the most popular scripting languages. Through this book, you'll learn Jupyter Notebooks, the technology used in academic and commercial circles with in-line code running support.

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.