Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
The main aim of this book is to introduce a group of models and modelling of information and knowledge comprehensibly. Such models and the processes for how to create them help to improve the skills to analyse and structure thoughts and ideas, to become more precise, to gain a deeper understanding of the matter being modelled, and to assist with specific tasks where modelling helps, such as reading comprehension and summarisation of text. The book draws ideas and transferrable approaches from the plethora of types of models and the methods, techniques, tools, procedures, and methodologies to create them in computer science. This book covers five principal declarative modelling approaches to model information and knowledge for different, yet related, purposes. It starts with entry-level mind mapping, to proceed to biological models and diagrams, onward to conceptual data models in software development, and from there to ontologies in artificial intelligence and all the way to ontology in philosophy. Each successive chapter about a type of model solves limitations of the preceding one and turns up the analytical skills a notch. These what-and-how for each type of model is followed by an integrative chapter that ties them together, comparing their strengths and key characteristics, ethics in modelling, and how to design a modelling language. In so doing, we'll address key questions such as: what type of models are there? How do you build one? What can you do with a model? Which type of model is best for what purpose? Why do all that modelling? The intended audience for this book is professionals, students, and academics in disciplines where systematic information modelling and knowledge representation is much less common than in computing, such as in commerce, biology, law, and humanities. And if a computer science student or a software developer needs a quick refresher on conceptual data models or a short solid overview of ontologies, then this book will serve them well.
An Introduction to Ontology Engineering introduces the student to a comprehensive overview of ontology engineering, and offers hands-on experience that illustrate the theory. The topics covered include: logic foundations for ontologies with languages and automated reasoning, developing good ontologies with methods and methodologies, the top-down approach with foundational ontologies, and the bottomup approach to extract content from legacy material, and a selection of advanced topics that includes Ontology-Based Data Access, the interaction between ontologies and natural languages, and advanced modelling with fuzzy and temporal ontologies. Each chapter contains review questions and exercises, and descriptions of two group assignments are provided as well.The textbook is aimed at advanced undergraduate/postgraduate level in computer science and could fi t a semester course in ontology engineering or a 2-week intensive course. Domain experts and philosophers may fi nd a subset of the chapters of interest, or work through the chapters in a different order.Maria Keet is an Associate Professor with the Department of Computer Science, University of Cape Town, South Africa. She received her PhD in Computer Science in 2008 at the KRDB Research Centre, Free University of Bozen-Bolzano, Italy. Her research focus is on knowledge engineering with ontologies and Ontology, and their interaction with natural language and conceptual data modelling, which has resulted in over 100 peer-reviewed publications. She has developed and taught multiple courses on ontology engineering and related courses at various universities since 2009.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.