Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Erster Teil Die übliche Auffassung von der Mathematik und ihre Widerlegung.- 1 Die Rolle von Anschauung und Erfahrung.- 2 Die Rolle der Voraussetzungen.- 3 Die Nichtuntrüglichkeit des mathematischen Schliessens.- Zweiter Teil Die landläufige Auffassung von der Physik und ihre Berichtigung.- 4 Physikalische Begriffsbildungen.- 5 Die Gesetze der Physik und ewige Naturgesetze.- 6 Die Beziehung zwischen Theorie und Experiment.- Dritter Teil Fragen philosophischen Charakters.- 7 Physikalische Gesetzlichkeit und Kausalität.- 8 Naturgeschehen und Wahrscheinlichkeit.- 9 Die Rolle von idealen Gebilden.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it.This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it.This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Geometry, like arithmetic, requires for its logical development only a small number of simple, fundamental principles: the axioms of geometry. The choice of axioms and their relations to one another is a problem which, has been discussed since the time of Euclid. This problem is tantamount to the logical analysis of our intuition of space. Hilbert attempts to choose for geometry a simple and complete set of independent axioms and to deduce from these the most important geometrical theorems so as to bring out as clearly as possible the significance of the different groups of axioms and the scope of the conclusions to be derived from the individual axioms.
An English translation of the notes from David Hilbert's course in 1897 on Invariant Theory at the University of Gottingen taken by his student Sophus Marxen.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.