Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
The book explores Peirce's non standard thoughts on a synthetic continuum, topological logics, existential graphs, and relational semiotics, offering full mathematical developments on these areas. More precisely, the following new advances are offered: (1) two extensions of Peirce's existential graphs, to intuitionistic logics (a new symbol for implication), and other non-classical logics (new actions on nonplanar surfaces); (2) a complete formalization of Peirce's continuum, capturing all Peirce's original demands (genericity, supermultitudeness, reflexivity, modality), thanks to an inverse ordinally iterated sheaf of real lines; (3) an array of subformalizations and proofs of Peirce's pragmaticist maxim, through methods in category theory, HoTT techniques, and modal logics. The book will be relevant to Peirce scholars, mathematicians, and philosophers alike, thanks to thorough assessments of Peirce's mathematical heritage, compact surveys of the literature, and new perspectives offered through formal and modern mathematizations of the topics studied.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.