Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Recent advances in data mining allow for exploiting patterns as the primary means for clustering and classifying large collections of data. In this thesis, we present three advances in pattern-based clustering technology, an advance in semi-supervised pattern-based classification, and a related advance in pattern frequency counting. In our first contribution, we analyze numerous deficiencies with traditional patternsignificance measures such as support and confidence, and propose a web image clustering algorithm that uses an objective interestingness measure to identify significant patterns, yielding measurably better clustering quality.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.