Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Mathematical Methods in Data Science covers a broad range of mathematical tools used in data science, including calculus, linear algebra, optimization, network analysis, probability and differential equations. Based on the authors' recently published and previously unpublished results, this book introduces a new approach based on network analysis to integrate big data into the framework of ordinary and partial differential equations for dataanalysis and prediction. With data science being used in virtually every aspect of our society, the book includes examples and problems arising in data science and the clear explanation of advanced mathematical concepts, especially data-driven differential equations, making it accessible to researchers and graduate students in mathematics and data science.
The book lies at the interface of mathematics, social media analysis, and data science. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.