Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Exa-scale computing needs to re-examine the existing hardware platform that can support intensive data-oriented computing. Since the main bottleneck is from memory, we aim to develop an energy-efficient in-memory computing platform in this book. First, the models of spin-transfer torque magnetic tunnel junction and racetrack memory are presented. Next, we show that the spintronics could be a candidate for future data-oriented computing for storage, logic, and interconnect. As a result, by utilizing spintronics, in-memory-based computing has been applied for data encryption and machine learning. The implementations of in-memory AES, Simon cipher, as well as interconnect are explained in details. In addition, in-memory-based machine learning and face recognition are also illustrated in this book.
Serving as a bridge between researchers in the computing domain and computing hardware designers, this book presents ReRAM techniques for distributed computing using IMC accelerators, ReRAM-based IMC architectures for machine learning (ML) and data-intensive applications, and strategies to map ML designs onto hardware accelerators.
3D integration is an emerging technology for the design of many-core microprocessors and memory integration.
This book shows how the use of metamaterials allows coherent THz signal generation, amplification, transmission, and detection for phase-arrayed CMOS transistors with significantly improved performance. The book reflects the latest research and provides a state-of-the-art reference on CMOS-based metamaterial devices and mm-wave and THz systems.
This book shows that with the use of metamaterials, one can have coherent THz signal generation, amplification, transmission, and detection for phase-arrayed CMOS transistors with significantly improved performance. Offering detailed coverage from device to system, the book describes the design and application of metamaterials in actual CMOS integrated circuits, includes real circuit examples and chip demonstrations with measurement results, and also evaluates system performance after CMOS-based system-on-chip integration. The book reflects the latest research progress and provides a state-of-the-art reference on CMOS-based metamaterial devices and mm-wave and THz systems.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.