Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
He [Kronecker] was, in fact, attempting to describe and to initiate a new branch of mathematics, which would contain both number theory and alge- braic geometry as special cases.-Andre Weil [62] This book is about mathematics, not the history or philosophy of mathemat- ics. Still, history and philosophy were prominent among my motives for writing it, and historical and philosophical issues will be major factors in determining whether it wins acceptance. Most mathematicians prefer constructive methods. Given two proofs of the same statement, one constructive and the other not, most will prefer the constructive proof. The real philosophical disagreement over the role of con- structions in mathematics is between those-the majority-who believe that to exclude from mathematics all statements that cannot be proved construc- tively would omit far too much, and those of us who believe, on the contrary, that the most interesting parts of mathematics can be dealt with construc- tively, and that the greater rigor and precision of mathematics done in that way adds immensely to its value.
In a book written for mathematicians, teachers of mathematics, and highly motivated students, Harold Edwards has taken a bold and unusual approach to the presentation of advanced calculus.
This work presents a modern approach to a remarkable algebraic technique. It should be of interest to both the mathematical historian and the working specialist in commutative algebra, number theory and algebraic geometry.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.