Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
The 1995 work of Wiles and Taylor-Wiles opened up a whole new technique in algebraic number theory and, a decade on, the waves caused by this incredibly important work are still being felt. This book, by a leading researcher, covers both this general area and that of Iwasawa Theory, which is currently enjoying a resurgence in popularity.
This book provides a comprehensive account of the key theory on which the Taylor-Wiles proof of Fermat's last theorem is based, presenting an overview of the theory of automorphic forms on linear algebraic groups. The book will appeal to graduate students and researchers in number theory and arithmetic algebraic geometry.
The theory of p-adic and classic modular forms, and the study of arithmetic and p-adic L-functions has proved to be a fruitful area of mathematics over the last decade. Professor Hida has given courses on these topics worldwide and here provides the reader with an elementary insight into the theory of L-functions.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.