Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
There has been a strong need to enhance the utilization of renewable energy systems (RESs) from onshore to offshore applications where oil and gas companies are pivoting to integrate such renewable energy options into their offshore operations to lower their carbon footprint, extend the lifetime of their assets, and expand their market. In this regard, innovative hybrid energy systems, such as "Power to Gas” (P2G) and "Power to Liquid” (P2L) options, as well as novel integration strategies for "Gas to Power” (G2P) systems, offer the opportunity to implement solutions energy transition, paving the way to offshore RES deployment. Hybrid Energy Systems for Offshore Applications delivers a comprehensive presentation of state of the art and perspective developments of offshore RES exploitation strategies and technologies, and provides a unique portfolio of decision-making methodologies supporting the selection of the most suitable options for offshore renewable energy production at a specific site. System modeling and analysis along with the definitions of multicriteria methodologies and strategies based on sustainability, environmental impact, and safety performance indicators are addressed in an integrated fashion. Rounding out with both research and practical applications explained, this book gives academicians and industrial professionals fundamentals and methods for integrated performance analysis of innovative systems addressing offshore RES exploitation, sustainable chemical and power production, better efficiency, lower costs, lower environmental impact, and higher inherent safety.Harmonized presentation of RESsUnique coverage on hybrid energy systems and their offshore applicationsComprehensive thermodynamic analysis and evaluation of the developed systemsProcess and system modeling, analysis, and decision-making methodologies for offshore P2G, P2L, and G2P solutionsSustainability modeling and assessment studies for various offshore applicationsDistinct parametric studies, illustrations, and case studiesSpecific sustainability and safety performance indicators for comparative evaluations
Renewable Hydrogen Production provides a comprehensive analysis of renewable energy-based hydrogen production. Through simulation analysis and experimental investigations, the book provides fundamentals, compares existing hydrogen production applications, discusses novel technologies, and offers insights into the future directions of this rapidly evolving industry. This all-in-one resource on how to produce clean hydrogen production to enhance energy efficiency and support sustainable development will appeal to a wide variety of industries and professionals. Addresses the production of clean hydrogen from the major sources of renewable energy, including wind, solar, geothermal, hydro, biomass and marine energy Presents information from simulations and experimental analyses Offers insights into the future of renewable hydrogen production
Geothermal Energy Systems provides design and analysis methodologies by using exergy and enhanced exergy tools (covering exergoenvironmental, exergoeconomic, exergetic life cycle assessment, etc.), environmental impact assessment models, and sustainability models and approaches. In addition to presenting newly developed advanced and integrated systems for multigenerational purposes, the book discusses newly developed environmental impact assessment and sustainability evaluation methods and methodologies. With case studies for integrated geothermal energy sources for multigenerational aims, engineers can design and develop new geothermal integrated systems for various applications and discover the main advantages of design choices, system analysis, assessment and development of advanced geothermal power systems.
Integrated Energy Systems for Multigeneration looks at how measures implemented to limit greenhouse gas emissions must consider smart utilization of available limited resources and employ renewable resources through integrated energy systems and the utilization of waste energy streams. This reference considers the main concepts of thermal and conventional energy systems through detailed systems description, analyses of methodologies, performance assessment and optimization, and illustrative examples and case studies. The book examines producing power and heat with cooling, freshwater, green fuels and other useful commodities designed to tackle rising greenhouse gas emissions in the atmosphere. With worldwide energy demand increasing, and the consequences of meeting supply with current dependency on fossil fuels, investigating and developing sustainable alternatives to the conventional energy systems is a growing concern for global stakeholders.Analyzes the links between clean energy technologies and achieving sustainable developmentIllustrates several examples of design and analysis of integrated energy systemsDiscusses performance assessment and optimizationUses illustrative examples and global case studies to explain methodologies and concepts
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.