Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
The goal of this monograph is to answer the question, is it possible to solve the dynamics problem inside the configuration space instead of the phase space? By introducing a proper class of vector field ¿ the Cartesian vector field ¿ given in a Riemann space, the authors explore the connections between the first order ordinary differential equations (ODEs) associated to the Cartesian vector field in the configuration space of a given mechanical system and its dynamics. The result is a new perspective for studying the dynamics of mechanical systems, which allows the authors to present new cases of integrability for the Suslov and Veselova problem; establish the relation between the Cartesian vector field and the integrability of the geodesic flow in a special class of homogeneous surfaces; discuss the importance of the Nambu bracket in the study of first order ODEs; and offer a solution of the inverse problem in celestial mechanics.
Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors' work on structurally stable planar quadratic polynomial differential systems.
This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties.
The book deals with continuous piecewise linear differential systems in the plane with three pieces separated by a pair of parallel straight lines. Moreover, these differential systems are symmetric with respect to the origin of coordinates. This class of systems driven by concrete applications is of interest in engineering, in particular in control theory and the design of electric circuits. By studying these particular differential systems we will introduce the basic tools of the qualitative theory of ordinary differential equations, which allow us to describe the global dynamics of these systems including the infinity. The behavior of their solutions, their parametric stability or instability and their bifurcations are described. The book is very appropriate for a first course in the qualitative theory of differential equations or dynamical systems, mainly for engineers, mathematicians, and physicists.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.