Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This book discusses the modern theory of Laplace eigenfunctions through the lens of a new tool called geodesic beams. The authors provide a brief introduction to the theory of Laplace eigenfunctions followed by an accessible treatment of geodesic beams and their applications to sup norm estimates, L^p estimates, averages, and Weyl laws. Geodesic beams have proven to be a valuable tool in the study of Laplace eigenfunctions, but their treatment is currently spread through a variety of rather technical papers. The authors present a treatment of these tools that is accessible to a wider audience of mathematicians. Readers will gain an introduction to geodesic beams and the modern theory of Laplace eigenfunctions, which will enable them to understand the cutting edge aspects of this theory.
Studies high energy resonances for the operators $-\Delta_{\partial\Omega,\delta}:=-\Delta \delta_{\partial\Omega}\otimes V\quad \textrm{and}\quad -\Delta_{\partial\Omega,\delta'}:=-\Delta \delta_{\partial\Omega}'\otimes V\partial_\nu$ where $\Omega\subset{\mathbb{R}}^{d}$ is strictly convex with smooth boundary.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.