Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
In diesem Ratgeber finden Sie Informationen, die Ihnen bei der Beantwortung der Frage helfen koennen, ob Sie Mathematik studieren sollen, und wenn ja, an welcher Universitat und mit welcher Schwerpunktsetzung.
Dieses Buch versteht sich als Reiseführer in das Land der Mathematik. Es informiert unter anderem über die Regionen dieses Landes (Algebra, Geometrie, Analysis, Stochastik, ...), über seine Geschichte, bedeutende Krisen und Entwicklungslinien, Beziehung zu benachbarten Gebieten, Kultur und Gepflogenheiten (Modellbildung, das Phänomen des Beweises, Anwendungen, ...) und seine Bewohner, die Mathematiker.Für Abiturienten bietet dieses Buch eine umfassende Orientierung über das Reiseziel Mathematik. Angehenden Studierenden der Mathematik eröffnet die kompakte Darstellung einen Überblick über die Gesamtheit ihres Studienfachs.Sie finden einen Blick auf Zusammenhänge zwischen Fachgebieten, Informationen zu Vorlesungsinhalten und eine Einführung in mathematische Denkweisen und Fragestellungen. Studierende profitieren von den Erläuterungen zu Anwendungen und Berufsfeldern und erweitern ihren Horizont durch einen Blick auf die Traditionen, die diese Disziplin prägen. Für künftigeMathematiker gehört dieser Reiseführer unbedingt ins Handgepäck.Das Buch ist für die zweite Auflage komplett durchgesehen und aktualisiert. Insbesondere wird die Rolle der Mathematik in der Digitalisierung näher beleuchtet.
Dieses Buch richtet sich an Studierende der Mathematik, die die Anfängervorlesungen in Analysis und Linearer Algebra gemeistert haben. Es ist gedacht als Orientierungshilfe für die Vielzahl an spezialisierten Fachveranstaltungen in den mittleren und höheren Semestern. Ein wichtiges Anliegen ist die Darstellung von Vergleichsmöglichkeiten und Ähnlichkeiten zwischen mathematischen Disziplinen. Das organisierende Prinzip ist der Begriff der mathematischen Struktur, der sich durch alle Teilgebiete der Mathematik zieht. Die Inhalte, an denen die verschiedenen Typen von Strukturen exemplarisch erläutert werden, decken curriculare Anforderungen insbesondere aus der Algebra und der Geometrie (differentiell und algebraisch) ab. Die Diskussion von Vergleichsmöglichkeiten enthält aber auch Einführungen in die Kategorientheorie und die Garbentheorie, deren Bedeutung in der modernen Mathematik eine stärkere Verankerung in den Curricula nahelegt. Das Buch eignet sich insbesondere auch zum Nachschlagen der dargestellten Strukturen.
Sie studieren Mathematik im ersten oder zweiten Semester? Das Verstehen der Vorlesungen und das Lösen der Übungsaufgaben fällt Ihnen nicht unbedingt leicht? Sie wissen nicht genau, ob Sie fit für die Prüfung sind? Dann kann Ihnen dieses Arbeitsbuch rund um grundlegende Inhalte und Studiertechniken im Mathematikstudium helfen. Die Autoren greifen tief in die Know-How-Kiste und zeigen, wie Mathematik erfolgreich studiert werden kann. Basierend auf authentischen Verständnisproblemen von Studierenden erhalten Sie mit diesem Buch ein reichhaltiges Angebot an Materialien zu ausgewählten Themengebieten.Neben erprobten Texten, umfangreichen Beispielen sowie zahlreichen Übungsaufgaben und Kontrollfragen (allesamt mit Lösungen) finden Sie konkrete Hinweise und Konzepte zum Lesen mathematischer Texte, zum Verfassen dieser und zum Überprüfen des eigenen Lernstandes.Aus dem Inhalt:Restklassen Äquivalenzrelationen Beweistechniken Gruppen Ringe, Körpervon den natürlichen zu den reellen Zahlen
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.