Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This book is an English translation of an entirely revised version of the 1958 edition of the eighth chapter of the book Algebra, the second Book of the Elements of Mathematics.It is devoted to the study of certain classes of rings and of modules, in particular to the notions of Noetherian or Artinian modules and rings, as well as that of radical.This chapter studies Morita equivalence of module and algebras, it describes the structure of semisimple rings. Various Grothendieck groups are defined that play a universal role for module invariants.The chapter also presents two particular cases of algebras over a field. The theory of central simple algebras is discussed in detail; their classification involves the Brauer group, of which severaldescriptions are given. Finally, the chapter considers group algebras and applies the general theory to representations of finite groups.At the end of the volume, a historical note taken from the previous edition recounts the evolution of many of the developed notions.
Les Éléments de mathématique de Nicolas BOURBAKI ont pour objet une présentation rigoureuse, systématique et sans prérequis des mathématiques depuis leurs fondements.Le Livre de Théories spectrales est consacré à l'étude des algèbres normées et de leurs applications. Le premier chapitre met en place la théorie fondamentale des algèbres de Banach et des algèbres stellaires. Nous y présentons l'équivalence de catégories entre algèbres stellaires commutatives et espaces topologiques localement compacts, ainsi que le calcul fonctionnel holomorphe en plusieurs variables dans une algèbre de Banach commutative.La transformation de Fourier, qui est l'un des outils mathématiques les plus universels, est étudiée au second chapitre, dans le cadre des groupes localement compacts commutatifs.Le texte est complété par de nombreux exercices.Ces deux chapitres forment une édition entièrement refondue de l'édition de 1967. The Elements of Mathematics of Nicolas Bourbaki have the goal of giving a rigorous and systematic presentation of mathematics starting from the foundations, without prerequisites. The book of Spectral Theories is devoted to the study of normed algebras and their applications. The first chapter establishes the basic theory of Banach algebras and C*-algebras. We present the equivalence of categories between commutative C*-algebras and locally compact topological spaces, as well as the holomorphic functional calculus in several variables in a commutative Banach algebra.The Fourier transform, which is one of the most universal mathematical tools, is studied in the second chapter, in the context of locally compact commutative topological groups.The text is accompanied by many exercices.These two chapters are completely updated new versions of the 1967 original edition.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.