Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Reinforcement learning (RL) will deliver one of the biggest breakthroughs in AI over the next decade, enabling algorithms to learn from their environment to achieve arbitrary goals. This exciting development avoids constraints found in traditional machine learning (ML) algorithms. This practical book shows data science and AI professionals how to learn by reinforcementand enable a machine to learn by itself.Author Phil Winder of Winder Research covers everything from basic building blocks to state-of-the-art practices. You'll explore the current state of RL, focus on industrial applications, learnnumerous algorithms, and benefit from dedicated chapters on deploying RL solutions to production. This is no cookbook; doesn't shy away from math and expects familiarity with ML.Learn what RL is and how the algorithms help solve problemsBecome grounded in RL fundamentals including Markov decision processes, dynamic programming, and temporal difference learningDive deep into a range of value and policy gradient methodsApply advanced RL solutions such as meta learning, hierarchical learning, multi-agent, and imitation learningUnderstand cutting-edge deep RL algorithms including Rainbow, PPO, TD3, SAC, and moreGet practical examples through the accompanying website
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.