Norges billigste bøker

Bøker av Rangaraj M. Rangayyan

Filter
Filter
Sorter etterSorter Populære
  • av Arianna Mencattini
    731,-

    The identification and interpretation of the signs of breast cancer in mammographic images from screening programs can be very difficult due to the subtle and diversified appearance of breast disease. This book presents new image processing and pattern recognition techniques for computer-aided detection and diagnosis of breast cancer in its various forms. The main goals are: (1) the identification of bilateral asymmetry as an early sign of breast disease which is not detectable by other existing approaches; and (2) the detection and classification of masses and regions of architectural distortion, as benign lesions or malignant tumors, in a unified framework that does not require accurate extraction of the contours of the lesions. The innovative aspects of the work include the design and validation of landmarking algorithms, automatic Tabar masking procedures, and various feature descriptors for quantification of similarity and for contour independent classification of mammographic lesions. Characterization of breast tissue patterns is achieved by means of multidirectional Gabor filters. For the classification tasks, pattern recognition strategies, including Fisher linear discriminant analysis, Bayesian classifiers, support vector machines, and neural networks are applied using automatic selection of features and cross-validation techniques. Computer-aided detection of bilateral asymmetry resulted in accuracy up to 0.94, with sensitivity and specificity of 1 and 0.88, respectively. Computer-aided diagnosis of automatically detected lesions provided sensitivity of detection of malignant tumors in the range of [0.70, 0.81] at a range of falsely detected tumors of [0.82, 3.47] per image. The techniques presented in this work are effective in detecting and characterizing various mammographic signs of breast disease.

  • av Thanh Cabral
    479,-

    Fractal analysis is useful in digital image processing for the characterization of shape roughness and gray-scale texture or complexity. Breast masses present shape and gray-scale characteristics in mammograms that vary between benign masses and malignant tumors. This book demonstrates the use of fractal analysis to classify breast masses as benign masses or malignant tumors based on the irregularity exhibited in their contours and the gray-scale variability exhibited in their mammographic images. A few different approaches are described to estimate the fractal dimension (FD) of the contour of a mass, including the ruler method, box-counting method, and the power spectral analysis (PSA) method. Procedures are also described for the estimation of the FD of the gray-scale image of a mass using the blanket method and the PSA method. To facilitate comparative analysis of FD as a feature for pattern classification of breast masses, several other shape features and texture measures are described in the book. The shape features described include compactness, spiculation index, fractional concavity, and Fourier factor. The texture measures described are statistical measures derived from the gray-level cooccurrence matrix of the given image. Texture measures reveal properties about the spatial distribution of the gray levels in the given image; therefore, the performance of texture measures may be dependent on the resolution of the image. For this reason, an analysis of the effect of spatial resolution or pixel size on texture measures in the classification of breast masses is presented in the book. The results demonstrated in the book indicate that fractal analysis is more suitable for characterization of the shape than the gray-level variations of breast masses, with area under the receiver operating characteristics of up to 0.93 with a dataset of 111 mammographic images of masses. The methods and results presented in the book are useful for computer-aided diagnosis of breast cancer. Table of Contents: Computer-Aided Diagnosis of Breast Cancer / Detection and Analysis of\newline Breast Masses / Datasets of Images of Breast Masses / Methods for Fractal Analysis / Pattern Classification / Results of Classification of Breast Masses / Concluding Remarks

  • av Rangaraj M. Rangayyan
    2 127,-

    Demonstrates the benefits reaped from the application of digital image processing, computer vision, and pattern analysis techniques to biomedical images. This book focuses on post-acquisition challenges such as image enhancement, detection of edges and objects, analysis of shape, quantification of texture and sharpness, and pattern analysis.

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.