Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves.
The first book devoted exclusively to existence questions, constructive algorithms, enumeration questions, and other properties concerning classes of matrices of combinatorial significance. Combinatorial Matrix Classes is a natural sequel to the author's previous book Combinatorial Matrix Theory written with H. J. Ryser, and is likely to achieve similar classic status.
The large and diffuse body of literature connected with sign-solvability is presented as a coherent whole for the first time in this book, displaying it as a beautiful interplay between combinatorics and linear algebra.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.