Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or mediaMethods of clustering to detect groups of similar items in a large datasetSearch engine features -- crawlers, indexers, query engines, and the PageRank algorithmOptimization algorithms that search millions of possible solutions to a problem and choose the best oneBayesian filtering, used in spam filters for classifying documents based on word types and other featuresUsing decision trees not only to make predictions, but to model the way decisions are madePredicting numerical values rather than classifications to build price modelsSupport vector machines to match people in online dating sitesNon-negative matrix factorization to find the independent features in a datasetEvolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a gameEach chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you."e;Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."e;-- Dan Russell, Google"e;Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."e;-- Tim Wolters, CTO, Collective Intellect
In this insightful book, you'll learn from the best data practitioners in the field just how wide-ranging -- and beautiful -- working with data can be. Join 39 contributors as they explain how they developed simple and elegant solutions on projects ranging from the Mars lander to a Radiohead video.With Beautiful Data, you will:Explore the opportunities and challenges involved in working with the vast number of datasets made available by the WebLearn how to visualize trends in urban crime, using maps and data mashupsDiscover the challenges of designing a data processing system that works within the constraints of space travelLearn how crowdsourcing and transparency have combined to advance the state of drug researchUnderstand how new data can automatically trigger alerts when it matches or overlaps pre-existing dataLearn about the massive infrastructure required to create, capture, and process DNA dataThat's only small sample of what you'll find in Beautiful Data. For anyone who handles data, this is a truly fascinating book. Contributors include:Nathan YauJonathan Follett and Matt HolmJ.M. HughesRaghu Ramakrishnan, Brian Cooper, and Utkarsh SrivastavaJeff HammerbacherJason Dykes and Jo WoodJeff Jonas and Lisa SokolJud ValeskiAlon Halevy and Jayant MadhavanAaron Koblin with Valdean KlumpMichal MigurskiJeff HeerCoco KrummePeter NorvigMatt Wood and Ben BlackburneJean-Claude Bradley, Rajarshi Guha, Andrew Lang, Pierre Lindenbaum, Cameron Neylon, Antony Williams, and Egon WillighagenLukas Biewald and Brendan O'ConnorHadley Wickham, Deborah Swayne, and David PooleAndrew Gelman, Jonathan P. Kastellec, and Yair GhitzaToby Segaran
With this book, the promise of the Semantic Web -- in which machines can find, share, and combine data on the Web -- is not just a technical possibility, but a practical reality Programming the Semantic Web demonstrates several ways to implement semantic web applications, using current and emerging standards and technologies. You'll learn how to incorporate existing data sources into semantically aware applications and publish rich semantic data.Each chapter walks you through a single piece of semantic technology and explains how you can use it to solve real problems. Whether you're writing a simple mashup or maintaining a high-performance enterprise solution,Programming the Semantic Web provides a standard, flexible approach for integrating and future-proofing systems and data.This book will help you:Learn how the Semantic Web allows new and unexpected uses of data to emergeUnderstand how semantic technologies promote data portability with a simple, abstract model for knowledge representationBecome familiar with semantic standards, such as the Resource Description Framework (RDF) and the Web Ontology Language (OWL)Make use of semantic programming techniques to both enrich and simplify current web applications
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.