Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
This monograph presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, the authors study Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs). They explain how covariances are related to RKHSs and examine the Bayes' formula, the filtering and analytic problem related to
This monograph presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, the authors study Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs). They explain how covariances are related to RKHSs and examine the Bayes¿ formula, the filtering and analytic problem related to fractional Brownian motion, and equivalence and singularity of Gaussian random fields. The book also describes applications in finance and spatial statistics and presents results on Dirichlet forms and associated Markov processes.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.