Norges billigste bøker

Bøker av Xiaolin Song

Filter
Filter
Sorter etterSorter Populære
  • av Haotian Cao
    702,-

    The intelligent vehicle will play a crucial and essential role in the development of the future intelligent transportation system, which is developing toward the connected driving environment, ultimate driving safety, and comforts, as well as green efficiency. While the decision making, planning, and control are extremely vital components of the intelligent vehicle, these modules act as a bridge, connecting the subsystem of the environmental perception and the bottom-level control execution of the vehicle as well. This short book covers various strategies of designing the decision making, trajectory planning, and tracking control, as well as share driving, of the human-automation to adapt to different levels of the automated driving system.More specifically, we introduce an end-to-end decision-making module based on the deep Q-learning, and improved path-planning methods based on artificial potentials and elastic bands which are designed for obstacle avoidance. Then, the optimal method based on the convex optimization and the natural cubic spline is presented.As for the speed planning, planning methods based on the multi-object optimization and high-order polynomials, and a method with convex optimization and natural cubic splines, are proposed for the non-vehicle-following scenario (e.g., free driving, lane change, obstacle avoidance), while the planning method based on vehicle-following kinematics and the model predictive control (MPC) is adopted for the car-following scenario. We introduce two robust tracking methods for the trajectory following. The first one, based on nonlinear vehicle longitudinal or path-preview dynamic systems, utilizes the adaptive sliding mode control (SMC) law which can compensate for uncertainties to follow the speed or path profiles. The second one is based on the five-degrees-of-freedom nonlinear vehicle dynamical system that utilizes the linearized time-varying MPC to track the speed and path profile simultaneously.Toward human-automation cooperative driving systems, we introduce two control strategies to address the control authority and conflict management problems between the human driver and the automated driving systems. Driving safety field and game theory are utilized to propose a game-based strategy, which is used to deal with path conflicts during obstacle avoidance. Driver's driving intention, situation assessment, and performance index are employed for the development of the fuzzy-based strategy.Multiple case studies and demos are included in each chapter to show the effectiveness of the proposed approach. We sincerely hope the contents of this short book provide certain theoretical guidance and technical supports for the development of intelligent vehicle technology.

  • av Xiaolin Song
    694,-

    A road traffic participant is a person who directly participates in road traffic, such as vehicle drivers, passengers, pedestrians, or cyclists, however, traffic accidents cause numerous property losses, bodily injuries, and even deaths to them. To bring down the rate of traffic fatalities, the development of the intelligent vehicle is a much-valued technology nowadays. It is of great significance to the decision making and planning of a vehicle if the pedestrians' intentions and future trajectories, as well as those of surrounding vehicles, could be predicted, all in an effort to increase driving safety. Based on the image sequence collected by onboard monocular cameras, we use the Long Short-Term Memory (LSTM) based network with an enhanced attention mechanism to realize the intention and trajectory prediction of pedestrians and surrounding vehicles. However, although the fully automatic driving era still seems far away, human drivers are still a crucial part of the roaddrivervehicle system under current circumstances, even dealing with low levels of automatic driving vehicles. Considering that more than 90 percent of fatal traffic accidents were caused by human errors, thus it is meaningful to recognize the secondary task while driving, as well as the driving style recognition, to develop a more personalized advanced driver assistance system (ADAS) or intelligent vehicle. We use the graph convolutional networks for spatial feature reasoning and the LSTM networks with the attention mechanism for temporal motion feature learning within the image sequence to realize the driving secondary-task recognition. Moreover, aggressive drivers are more likely to be involved in traffic accidents, and the driving risk level of drivers could be affected by many potential factors, such as demographics and personality traits. Thus, we will focus on the driving style classification for the longitudinal car-following scenario. Also, based on the Structural Equation Model (SEM) and Strategic Highway Research Program 2 (SHRP 2) naturalistic driving database, the relationships among drivers' demographic characteristics, sensation seeking, risk perception, and risky driving behaviors are fully discussed. Results and conclusions from this short book are expected to offer potential guidance and benefits for promoting the development of intelligent vehicle technology and driving safety.

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.