Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
An original method of investigation of the conjugate conductive-convective problem of periodic heat transfer is developed. The novelty of the approach is that a particular conjugate problem is replaced by a general boundary-value problem for the heat conduction equation in the solid. Within the framework of the hyperbolic model of thermal conductivity, the effect of self-reinforcement of the degree of conjugation by increasing the period of oscillations is found. The processes of hydrodynamics and heat exchange with periodic internal structure are considered: periodic model of turbulent heat transfer, hydrodynamic instability, bubbles dynamics in liquid, and model of evaporating meniscus. The book is intended as a source and reference work for researchers and graduate students interested in the field of conjugate heat transfer.
This monograph presents a comprehensive treatment of analytical solutions to problems in the area of non-equilibrium evaporation and condensation processes. The book covers, among others, topics such as systems of conversation equations for molecular fluxes of mass, momentum and energy within the Knudsen layer, spherical growth of vapor bubbles in volumes of highly superheated liquid. The target audience primarily comprises research experts in the field of thermodynamics and fluid dynamics, but the book may also be beneficial for graduate students alike.
The second edition is extended by (i) the conjugate "strong evaporation - heat conduction" problem, (ii) the influence of accommodation coefficients on intensive processes of evaporation and condensation, (iii) the problem of supersonic condensation.
The true steady state mean value of the heat transfer coefficient must be multiplied by a newly defined coupling factor, which is always smaller than one and depends on the coupling parameters Biot number, Fourier number as well as dimensionless geometry and oscillation parameters.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.