Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Data structure and algorithms are two of the most important aspects of computer science. Data structure and algorithms help in understanding the nature of the problem at a deeper level and thereby a better understanding of the world. Learning data structure and algorithms will help you become a better programmer. This book provides a comprehensive introduction to the modern study of computer algorithms. It presents many algorithms and covers them in considerable depth, which makes their design and analysis accessible to all levels of readers. This book provides with an enjoyable introduction to the field of algorithms.
This book covers some introductory steps in using R programming language as a data science tool. The data science field has evolved so much recently with incredible quantities of generated data. To extract value from those data, one needs to be trained in the proper data science skills like statistical analysis, data cleaning, data visualization, and machine learning. R is now considered the centerpiece language for doing all these data science skills because it has many useful packages that not only can perform all the previous skills, but also, has additional packages that was developed by different scientists in diverse fields. These fields include, but are not limited to, business, marketing, microbiology, social science, geography, genomics, environmental science, etc. Furthermore, R is free software and can run on all major platforms: Windows, Mac Os, and UNIX/Linux. The first two chapters involve installing and using R and RStudio. RStudio is an IDE (integrated development environment) that makes R easier to use and is more similar to SPSS or Stata. Chapters 38 covers the different R objects and how to manipulate them including the very popular one, dataframes. Chapter 9 is about importing different files into your R working session like text or excel files. Chapters 10 and 11 are dealing with different tidyverse packages that can do interesting summaries of different dataframes including different types of data visualizations. In the last chapter, it introduces how functions are created in R along with some control structures and useful functions. In all these chapters, many examples along with different codes and outputs are given to help your understanding of this powerful programming language. I hope this book will be great addition to your future data analysis projects.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.