Gjør som tusenvis av andre bokelskere
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.Du kan når som helst melde deg av våre nyhetsbrev.
Polymeric materials play an essential and ubiquitous role in many fields including structural and packaging materials, drug development, tissue engineering, wastewater treatment, pollutant removal, separation, water purification, smart agriculture, and even road and building construction. This book contains eleven comprehensive chapters covering topics from deriving polymers from natural resources or wastes to developing novel functional polymeric materials in the form of membranes, hydrogels, foams, nanocomposites for various environmental applications. This book also discusses the utilization of waste plastics and the challenges and progress made in recycling and reusing commercially viable polymers. Such information is valuable and accelerates technological progress. Each chapter further gives the current fabrication methodology, challenges, and future scope of these materials related to their environmental applications. Thus anyone working on polymer-based materials will benefit from the comprehensive knowledge presented in this book on novel polymeric materials and their various environmental applications.
This is the final volume of a 3-volume history of solar power generating systems covering the approximately 50 years of research and development surrounding the energy crisis of 1973. Volume 1 focused on solar-thermal systems and the second volume on photovoltaic systems in the 20th century. Volume 3 covers photovoltaic developments from the start of the 21st century. The history is based upon keynote lectures given by international specialists at the Sede Boqer Symposia on Solar Electric Power Production, a series that commenced in 1986. The lectures document many technical details that have become hard to find, including some pertaining to technologies that were successfully demonstrated but subsequently discontinued owing to their not having been deemed to be cost-effective at the time. However, in the event that different economic considerations may ensue, these volumes can provide a valuable starting point, including references, for the re-investigation of some of those once abandoned ideas.
This unique collection introduces AI, Machine Learning (ML), and deep neural network technologies leading to scientific discovery from the datasets generated both by supercomputer simulation and by modern experimental facilities.Huge quantities of experimental data come from many sources - telescopes, satellites, gene sequencers, accelerators, and electron microscopes, including international facilities such as the Large Hadron Collider (LHC) at CERN in Geneva and the ITER Tokamak in France. These sources generate many petabytes moving to exabytes of data per year. Extracting scientific insights from these data is a major challenge for scientists, for whom the latest AI developments will be essential.The timely handbook benefits professionals, researchers, academics, and students in all fields of science and engineering as well as AI, ML, and neural networks. Further, the vision evident in this book inspires all those who influence or are influenced by scientific progress.
Based on workshops co-organized by Japan's St. Andrew University and Taiwan's National Chengchi University, this book provides readers with the toolbox for navigating the regional dynamics of political economy in Southeast Asia, with special focus on exploring the key factors determining the shifting dynamics. Organized in three parts, namely, geopolitical and security factors, alternative fields for regional cooperation, and the regional considerations of Southeast Asia, the chapters in the book feature key factors determining the political economy of the region. Written by authors hailing from varied backgrounds, this book is also a joint research effort on policy discussion and timely assessment of COVID-19 recovery plans in Southeast Asia.
This volume considers resistance networks: large graphs which are connected, undirected, and weighted. Such networks provide a discrete model for physical processes in inhomogeneous media, including heat flow through perforated or porous media. These graphs also arise in data science, e.g., considering geometrizations of datasets, statistical inference, or the propagation of memes through social networks. Indeed, network analysis plays a crucial role in many other areas of data science and engineering. In these models, the weights on the edges may be understood as conductances, or as a measure of similarity. Resistance networks also arise in probability, as they correspond to a broad class of Markov chains.The present volume takes the nonstandard approach of analyzing resistance networks from the point of view of Hilbert space theory, where the inner product is defined in terms of Dirichlet energy. The resulting viewpoint emphasizes orthogonality over convexity and provides new insights into the connections between harmonic functions, operators, and boundary theory. Novel applications to mathematical physics are given, especially in regard to the question of self-adjointness of unbounded operators.New topics are covered in a host of areas accessible to multiple audiences, at both beginning and more advanced levels. This is accomplished by directly linking diverse applied questions to such key areas of mathematics as functional analysis, operator theory, harmonic analysis, optimization, approximation theory, and probability theory.
As a bridge between electronics and photonics, terahertz science and technology has made tremendous progress in the past decades. While terahertz wave generation from gas, solid and plasma with femtosecond laser excitation has been widely used, terahertz liquid photonics is a newly emerging topic in recent years. This book includes the most recent experimental results, theoretical analysis, and simulated calculations on terahertz emission and detection from liquid materials under ultrashort-pulse laser excitation, providing readers a comprehensive understanding of current developments in terahertz liquid photonics. By comparing with traditional sources, distinctive properties of terahertz wave generation from liquids are discussed in detail, which provides a new perspective in exploring laser-matter interactions.
This unique compendium introduces the field of numerical modelling of water waves. The topics included the most widely used water wave modelling approaches, presented in increasing order of complexity and categorized into phase-averaged and phase-resolving at the highest level.A comprehensive state-of-the-art review is provided for each chapter, comprising the historical development of the method, the most relevant models and their practical applications. A full description on the method's underlying assumptions and limitations are also provided. The final chapter features coupling among different models, outlining the different types of implementations, highlighting their pros and cons, and providing numerous relevant examples for full context.The useful reference text benefits professionals, researchers, academics, graduate and undergraduate students in wave mechanics in general and coastal and ocean engineering in particular.
This book is written in a lucid and systematic way for advanced postgraduates and researchers studying applied mathematics, plasma physics, nonlinear differential equations, nonlinear optics, and other engineering branches where nonlinear wave phenomena is essential.In sequential order of the book's development, readers will understand basic plasmas with elementary definitions of magnetized and unmagnetized plasmas, plasma modeling, dusty plasma and quantum plasma. Following which, the book describes linear and nonlinear waves, solitons, shocks and other wave phenomena, while solutions to common nonlinear wave equations are derived via standard techniques. Readers are introduced to elementary perturbation and non-perturbation methods. They will discover several evolution equations in different plasma situations as well as the properties of solitons in those environments. Pertaining to those equations, readers will learn about their higher order corrections, as well as their different forms and solutions in non-planar geometry. The book offers further studies on different types of collisions between solitons in plasma environment, phenomena of soliton turbulence as a consequence of multi-soliton interactions, properties of large amplitude solitary waves which are discovered via non-perturbative Sagdeev's Pseudopotential Approach, as well as the speed and shape of solitons. Finally, the book reveals possible future developments of research in this rich field.
This book is mostly based on the author's 25 years of teaching combinatorics to two distinct sets of students: first-year students and seniors from all backgrounds, not just limited to only those majoring in mathematics and physics. The prerequisites are kept to a minimum; essentially, only high school algebra is required. The design is to go from zero knowledge to advanced themes and various applications during a semester of three or three and a half months with quite a few topics intended for research projects and additional reading.This unique book features the key themes of classical introductory combinatorics, modeling (mainly linear), and elementary number theory with a constant focus on applications in statistics, physics, biology, economics, and computer science. These applications include dimers, random walks, binomial and Poisson distributions, games of chance (lottery, dice, poker, roulette), pricing options, population growth, tree growth, modeling epidemic spread, invasion ecology, fission reactors, and networks.A lot of material is provided in the form of relatively self-contained problems, about 135, and exercises, about 270, which are almost always with hints and answers. A systematic introduction to number theory (with complete justifications) is a significant part of the book, including finite fields, Pell's equations, continued fractions, quadratic reciprocity, the Frobenius coin problem, Pisano periods, applications to magic and Latin squares and elements of cryptography. The recurrence relations and modeling play a very significant role, including the usage of Bessel functions for motivated readers. The book contains a lot of history of mathematics and recreational mathematics.
The book is devoted to the problems of modeling physical systems and fields using the tools and capabilities of the "Mathematica" software package. In the process of teaching classical courses in mechanics and mathematical physics, one often has to overcome significant difficulties associated with the cumbersomeness of the mathematical apparatus, which more than once distracts from the essence of the problems under consideration. The use of the "Mathematica" package, which has a rich set of analytical and graphic tools, makes the presentation of classic issues related to modeling and interpretation of physical processes much more transparent. This package enables the visualization of both analytical solutions of nonlinear differential equations and solutions obtained in the form of infinite series or special functions.The textbook consists of two parts that can be studied independently of each other. The first part deals with the issues of nonlinear mechanics and the theory of oscillations. The second part covers linear problems of classical mathematical physics and nonlinear evolution models describing, inter alia, transport phenomena and propagation of waves. The book contains the codes of programs written in the "Mathematica" package environment. Supplementary materials of programs illustrating and often complementing the presented material are available on the publisher's website.
With the rapid growth of new evidence from astronomy, space science and biology that supports the theory of life as a cosmic rather than terrestrial phenomenon, this book discusses a set of crucial data and pictures showing that life is still arriving at our planet. Although it could spark controversy among the most hardened sceptics this book will have an important role in shaping future science in this area.
The phenomenon of enterprise growth is more a function of the nature of the entrepreneurial person and the policies and strategies adopted by a venture rather than the economic and environmental factors such as profitability or industry growth. This book focuses on the role of founder characteristics and venture policies in promoting enterprise-growth, with special focus on High Growth Enterprises. The research reported in this book is triggered by the that almost 95% of business start-ups either get closed down or stagnate, with only about 5% taking to a growth path, even though many more of them are profitable. The study presented in the book investigates the relationships between enterprise growth and venture policies as well as entrepreneurial characteristics such as the traits, motives and background of entrepreneurs. It also identifies the general entrepreneurial characteristics and points to the need for reviewing/redefining some of the concepts traditionally associated with entrepreneurship, such as achievement motive, power motive, desire for independence, risk-taking ability, support and encouragement, etc.
A geometric figure has chirality, or handedness, if its mirror image cannot be brought to coincide with itself. The concept of chirality was instrumental in establishing the tetrahedral valences of the carbon atom, and has continued to play a key role in chemistry and molecular biology ever since.The fact that living organisms use only one of two mirror isomers of such molecules as amino acids and sugars, that is, the question of the origin of homochirality of the molecular basis of life, remains an unsolved problem of the same dignity as the origin of dark matter and dark energy.The increasing importance of chirality and topology in condensed matter physics and chemistry, and the production of new states of matter in heavy-ion collisions, have brought the concept of chirality into physics and cosmology in a tangible way while at the same time expanded the physics/chemistry interface. The book is the first to address all aspects of chirality in a single volume.
Muography is a term recently introduced to embrace different techniques that profit from the penetration capability of the muon component of cosmic rays to investigate the interior of large and otherwise inaccessible structures. Primary cosmic rays - high energy particles originating outside the solar system - interact with the Earth atmosphere and generate muons, particles with the same electric charge as the electron, while their mass is 200 times heavier. At the Earth's surface, cosmic muons represent the most abundant component of cosmic rays, and favourably, they can feature energies sufficiently high to penetrate even thick and dense materials, giving the opportunity of unveiling the internal structure of large volumes.Muography was made possible by the development of detectors in the field of particle physics, allowing the exploitation of this natural source for imaging in a vast variety of fields, characterizing this technique as truly interdisciplinary, and leading to significant advances in several disciplines. This book tries to cover all aspects of this methodology, with the different chapters pointing to the general physics principles, to the technological and image reconstruction challenges and to the principal applications in several fields, such as archaeology and geology but also civil and industrial applications.The volume contributors had omitted unnecessary technical details, while focusing on the main features and methodologies. Hence, the book not only targets scientists working in the field but also non-specialists, who might enjoy the reading as a tutorial.
In modern theoretical and applied mechanics, tensors and differential geometry are two almost essential tools. Unfortunately, in university courses for engineering and mechanics students, these topics are often poorly treated or even completely ignored. At the same time, many existing, very complete texts on tensors or differential geometry are so advanced and written in abstract language that discourage young readers looking for an introduction to these topics specifically oriented to engineering applications.This textbook, mainly addressed to graduate students and young researchers in mechanics, is an attempt to fill the gap. Its aim is to introduce the reader to the modern mathematical tools and language of tensors, with special applications to the differential geometry of curves and surfaces in the Euclidean space. The exposition of the matter is sober, directly oriented to problems that are ordinarily found in mechanics and engineering. Also, the language and symbols are tailored to those usually employed in modern texts of continuum mechanics.Though not exhaustive, as any primer textbook, this volume constitutes a coherent, self-contained introduction to the mathematical tools and results necessary in modern continuum mechanics, concerning vectors, 2nd- and 4th-rank tensors, curves, fields, curvilinear coordinates, and surfaces in the Euclidean space. More than 100 exercises are proposed to the reader, many of them complete the theoretical part through additional results and proofs. To accompany the reader in learning, all the exercises are entirely developed and solved at the end of the book.
Backing the Bold is a primer on the venture capital industry, business, and profession in Southeast Asia. The goal of the book's thirteen chapters has initially been to guide students of the Insignia Ventures Academy - Asia's first experiential venture capital accelerator - in their exploration of the venture capital industry and profession, specifically in the context of Southeast Asia's startup ecosystem and from the perspective of Insignia Ventures and its portfolio founders.Rather than being a book in the traditional sense of the word, such an origin and context for Backing the Bold has inevitably made this book a dynamic piece of literature, continuously growing and improving thanks to every new group of people who become part of the VC accelerator - as organizers, mentors, or participants.Now in print and in distribution, this first edition is available for all as a snapshot of Backing the Bold's progress as a continuously evolving repository of insights, best practices, and frameworks. It is for readers of any background or motivation to gain a better understanding of the venture capital investment process, portfolio management, and profession in the context of Southeast Asia's fast-growing technology markets.
Since the inelastic scattering of light was predicted nearly 100 years ago, Raman spectroscopy has become a mainstay of characterization techniques, with applications in a vast array of fields from chemistry to materials science and nanotechnology, from forensics to geology and art. More recently, it has found usage in the life sciences, and this book hereby outlines the state-of-the-art advances in applications of Raman spectroscopy to human health and biomedicine. It covers a wide range of human health science including medicine (especially cancer), physiology, biological molecules, pharmaceutical science, cells, viruses, microorganisms, and food science. Another highlight is that it describes recent progress on various Raman techniques such as surface-enhanced Raman scattering, tip-enhanced Raman scattering, non-linear Raman spectroscopy, Raman microscopy, and Raman imaging. Novel spectral analysis methods such as chemometrics are also prominently discussed.
This book examines global strategies for industrial champions. In particular, it highlights three categories of supply in industrial markets: premium products, low-price products, and complex digital solutions. The authors identify opportunities for creating synergies between these three strategies and address the overarching question: How can the company of the future be organized?
The purpose of this book is to change thinking about crises and risk. Risk management is today both a great success, an impressive achievement, and a notable failure. It works, and it doesn't work. It saves lives and property, and it fails to save lives and property. It helps and it hinders. Like all such management approaches, this has a lot to do with how it is employed and practiced, but in the case of risk management there is also a much more fundamental issue. The risk management framework, the risk management model, is wrong. Many organisations today treat all risks as point events, when the real risks involve systemic threats inherent in the global economy, and the uncertain nature of global society.The book argues that risk management has come a long way, but that evidence of its more recent failure is now all around us and that it needs to now change dramatically if it is to accommodate current realities. Whilst there is a clear need for us all to manage risk through a crisis, there is a lack of understanding of the nature of crises that is impeding progress. As well as providing a conceptual basis for changing the way risk management is undertaken, the book provides a blueprint for managing at organisational level through a global crisis, and, to a more limited extent, at government and other levels; how to prepare, what to do when it's happening and how and when to emerge into the post-crisis world.
The stochastic partial differential equations (SPDEs) arise in many applications of the probability theory. This monograph will focus on two particular (and probably the most known) equations: the stochastic heat equation and the stochastic wave equation.The focus is on the relationship between the solutions to the SPDEs and the fractional Brownian motion (and related processes). An important point of the analysis is the study of the asymptotic behavior of the p-variations of the solutions to the heat or wave equations driven by space-time Gaussian noise or by a Gaussian noise with a non-trivial correlation in space.The book is addressed to public with a reasonable background in probability theory. The idea is to keep it self-contained and avoid using of complex techniques. We also chose to insist on the basic properties of the random noise and to detail the construction of the Wiener integration with respect to them. The intention is to present the proofs complete and detailed.
Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.
Ved å abonnere godtar du vår personvernerklæring.