Om Measure Theory and Fine Properties of Functions, Revised Edition
This book provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space. It emphasizes the roles of Hausdorff measure and the capacity in characterizing the fine properties of sets and functions. The book covers theorems and differentiation in Rn , Hausdorff measures, area and coarea formulas for Lipschitz mappings and related change-of-variable formulas, and Sobolev functions and functions of bounded variation. This second edition includes countless improvements in notation, format, and clarity of exposition. Also new are several sections describing the ¿-¿ theorem, weak compactness criteria in L1, and Young measure methods for weak convergence. In addition, the bibliography has been updated.
Vis mer