Utvidet returrett til 31. januar 2025

Brauer Groups and Obstruction Problems

- Moduli Spaces and Arithmetic

Om Brauer Groups and Obstruction Problems

The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory. Contributors: · Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman Parimala · Alexander Perry · Alena Pirutka · Justin Sawon · Alexei N. Skorobogatov · Paolo Stellari · Sho Tanimoto · Hugh Thomas · Yuri Tschinkel · Anthony Várilly-Alvarado · Bianca Viray · Rong Zhou

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783319836010
  • Bindende:
  • Paperback
  • Sider:
  • 247
  • Utgitt:
  • 18. juli 2018
  • Utgave:
  • 12017
  • Dimensjoner:
  • 155x235x0 mm.
  • Vekt:
  • 3985 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 18. desember 2024

Beskrivelse av Brauer Groups and Obstruction Problems

The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory.
Contributors:
┬╖ Nicolas Addington
┬╖ Benjamin Antieau
┬╖ Kenneth Ascher
┬╖ Asher Auel
┬╖ Fedor Bogomolov
· Jean-Louis Colliot-Thélène
┬╖ Krishna Dasaratha
┬╖ Brendan Hassett
┬╖ Colin Ingalls
· Martí Lahoz
· Emanuele Macrì
┬╖ Kelly McKinnie
┬╖ Andrew Obus
┬╖ Ekin Ozman
┬╖ Raman Parimala
┬╖ Alexander Perry
┬╖ Alena Pirutka
┬╖ Justin Sawon
┬╖ Alexei N. Skorobogatov
┬╖ Paolo Stellari
┬╖ Sho Tanimoto
┬╖ Hugh Thomas
┬╖ Yuri Tschinkel
· Anthony Várilly-Alvarado
┬╖ Bianca Viray
┬╖ Rong Zhou

Brukervurderinger av Brauer Groups and Obstruction Problems



Finn lignende bøker
Boken Brauer Groups and Obstruction Problems finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.