Utvidet returrett til 31. januar 2025

Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids

Om Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids

This book develops tools to handle C*-algebras arising as completions of convolution algebras of sections of line bundles over possibly non-Hausdorff groupoids. A fundamental result of Gelfand describes commutative C*-algebras as continuous functions on locally compact Hausdorff spaces. Kumjian, and later Renault, showed that Gelfand's result can be extended to include non-commutative C*-algebras containing a commutative C*-algebra. In their setting, the C*-algebras in question may be described as the completion of convolution algebras of functions on twisted Hausdorff groupoids with respect to a certain norm. However, there are many natural settings in which the Kumjian¿Renault theory does not apply, in part because the groupoids which arise are not Hausdorff. In fact, non-Hausdorff groupoids have been a source of surprising counterexamples and technical difficulties for decades. Including numerous illustrative examples, this book extends the Kumjian¿Renault theory toa much broader class of C*-algebras. This work will be of interest to researchers and graduate students in the area of groupoid C*-algebras, the interface between dynamical systems and C*-algebras, and related fields.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783031055126
  • Bindende:
  • Paperback
  • Sider:
  • 168
  • Utgitt:
  • 20. oktober 2022
  • Utgave:
  • 22001
  • Dimensjoner:
  • 155x10x235 mm.
  • Vekt:
  • 265 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 19. desember 2024

Beskrivelse av Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids

This book develops tools to handle C*-algebras arising as completions of convolution algebras of sections of line bundles over possibly non-Hausdorff groupoids. A fundamental result of Gelfand describes commutative C*-algebras as continuous functions on locally compact Hausdorff spaces.

Kumjian, and later Renault, showed that Gelfand's result can be extended to include non-commutative C*-algebras containing a commutative C*-algebra. In their setting, the C*-algebras in question may be described as the completion of convolution algebras of functions on twisted Hausdorff groupoids with respect to a certain norm. However, there are many natural settings in which the Kumjian¿Renault theory does not apply, in part because the groupoids which arise are not Hausdorff. In fact, non-Hausdorff groupoids have been a source of surprising counterexamples and technical difficulties for decades. Including numerous illustrative examples, this book extends the Kumjian¿Renault theory toa much broader class of C*-algebras.

This work will be of interest to researchers and graduate students in the area of groupoid C*-algebras, the interface between dynamical systems and C*-algebras, and related fields.

Brukervurderinger av Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids



Finn lignende bøker
Boken Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.