Utvidet returrett til 31. januar 2024

Clustering and Neural Network Approaches for General NN-Simulator

Om Clustering and Neural Network Approaches for General NN-Simulator

This book is based on the basis that clustering and neural networks methods. The clustering algorithms (k-means, and k-medoids) are describe the analysis on noise data i.e. preclassification for robust model development. The better choice of cluster are forming by Euclidean statistical clustering algorithms, are able to preclassified data into significant groups. We assume that both methods are better predicted on different example in real analysis. The recurrent backpropagation is one of the best optimization techniques for minimizing the error and achieve the best optimal result. Since we have input unit, output unit, and eventually hidden unit; we could say that this is supervised optimization learning process. The optimization process to minimizing the error and get the activated network till that all weight of the network are going to reach equilibrium state). This process usually take more time because every output of network add-up with input again and train network (weight) to reach the equilibrium state (optimal solution).Reported results and graphical user interface (GUI) snapshot, showing algorithms are integrated well in software package (simulator).

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783845409429
  • Bindende:
  • Paperback
  • Sider:
  • 68
  • Utgitt:
  • 6. juli 2011
  • Dimensjoner:
  • 229x152x4 mm.
  • Vekt:
  • 113 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 27. november 2024

Beskrivelse av Clustering and Neural Network Approaches for General NN-Simulator

This book is based on the basis that clustering and neural networks methods. The clustering algorithms (k-means, and k-medoids) are describe the analysis on noise data i.e. preclassification for robust model development. The better choice of cluster are forming by Euclidean statistical clustering algorithms, are able to preclassified data into significant groups. We assume that both methods are better predicted on different example in real analysis. The recurrent backpropagation is one of the best optimization techniques for minimizing the error and achieve the best optimal result. Since we have input unit, output unit, and eventually hidden unit; we could say that this is supervised optimization learning process. The optimization process to minimizing the error and get the activated network till that all weight of the network are going to reach equilibrium state). This process usually take more time because every output of network add-up with input again and train network (weight) to reach the equilibrium state (optimal solution).Reported results and graphical user interface (GUI) snapshot, showing algorithms are integrated well in software package (simulator).

Brukervurderinger av Clustering and Neural Network Approaches for General NN-Simulator



Finn lignende bøker
Boken Clustering and Neural Network Approaches for General NN-Simulator finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.