Utvidet returrett til 31. januar 2025

Cohomology of Quotients in Symplectic and Algebraic Geometry

Om Cohomology of Quotients in Symplectic and Algebraic Geometry

These notes describe a general procedure for calculating the Betti numbers of the projective quotient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These quotient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9780691083704
  • Bindende:
  • Paperback
  • Sider:
  • 216
  • Utgitt:
  • 21. desember 1984
  • Dimensjoner:
  • 234x158x18 mm.
  • Vekt:
  • 350 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 18. desember 2024

Beskrivelse av Cohomology of Quotients in Symplectic and Algebraic Geometry

These notes describe a general procedure for calculating the Betti numbers of the projective quotient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These quotient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions.

Brukervurderinger av Cohomology of Quotients in Symplectic and Algebraic Geometry



Finn lignende bøker
Boken Cohomology of Quotients in Symplectic and Algebraic Geometry finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.