Norges billigste bøker
Om Convergence of Deep Learning in Cyber-Iot Systems and Security

CONVERGENCE OF DEEP LEARNING IN CYBER-IOT SYSTEMS AND SECURITY In-depth analysis of Deep Learning-based cyber-IoT systems and security which will be the industry leader for the next ten years. The main goal of this book is to bring to the fore unconventional cryptographic methods to provide cyber security, including cyber-physical system security and IoT security through deep learning techniques and analytics with the study of all these systems. This book provides innovative solutions and implementation of deep learning-based models in cyber-IoT systems, as well as the exposed security issues in these systems. The 20 chapters are organized into four parts. Part I gives the various approaches that have evolved from machine learning to deep learning. Part II presents many innovative solutions, algorithms, models, and implementations based on deep learning. Part III covers security and safety aspects with deep learning. Part IV details cyber-physical systems as well as a discussion on the security and threats in cyber-physical systems with probable solutions. Audience Researchers and industry engineers in computer science, information technology, electronics and communication, cybersecurity and cryptography.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9781119857211
  • Bindende:
  • Hardback
  • Sider:
  • 480
  • Utgitt:
  • 28. desember 2022
  • Dimensjoner:
  • 152x30x231 mm.
  • Vekt:
  • 816 g.
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 20. januar 2025
Utvidet returrett til 31. januar 2025
  •  

    Kan ikke leveres før jul.
    Kjøp nå og skriv ut et gavebevis

Beskrivelse av Convergence of Deep Learning in Cyber-Iot Systems and Security

CONVERGENCE OF DEEP LEARNING IN CYBER-IOT SYSTEMS AND SECURITY
In-depth analysis of Deep Learning-based cyber-IoT systems and security which will be the industry leader for the next ten years.
The main goal of this book is to bring to the fore unconventional cryptographic methods to provide cyber security, including cyber-physical system security and IoT security through deep learning techniques and analytics with the study of all these systems.
This book provides innovative solutions and implementation of deep learning-based models in cyber-IoT systems, as well as the exposed security issues in these systems. The 20 chapters are organized into four parts. Part I gives the various approaches that have evolved from machine learning to deep learning. Part II presents many innovative solutions, algorithms, models, and implementations based on deep learning. Part III covers security and safety aspects with deep learning. Part IV details cyber-physical systems as well as a discussion on the security and threats in cyber-physical systems with probable solutions.
Audience
Researchers and industry engineers in computer science, information technology, electronics and communication, cybersecurity and cryptography.

Brukervurderinger av Convergence of Deep Learning in Cyber-Iot Systems and Security



Finn lignende bøker
Boken Convergence of Deep Learning in Cyber-Iot Systems and Security finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.