Om Ecological Comparisons of Sedimentary Shores
I Suspension Feeders in Coastal Mud and Sand.- 1 Benthic Suspension Feeders as Determinants of Ecosystem Structure and Function in Shallow Coastal Waters.- 1.1 Introduction.- 1.2 Reefs and Beds.- 1.2.1 Bivalve Molluscs (Bivalvia).- 1.2.2 Vermetids (Gastropoda).- 1.2.3 Sabellids (Polychaeta).- 1.2.4 Serpulids (Polychaeta).- 1.3 Encrustations.- 1.4 Species Groups.- 1.5 Discussion.- References.- 2 Dynamics of Spatial and Temporal Complexity in European and North American Soft-Bottom Mussel Beds.- 2.1 Introduction.- 2.2 The Dynamic Nature of Mussel-Bed Structure.- 2.3 Quantifying Mussel-Bed Structure Using Fractal Geometry.- 2.4 Effects of Mussel Beds on Soft-Bottom Community Structure.- 2.5 Mechanisms of Mussel-Bed Impacts on Soft-Bottom Community Structure.- 2.6 Top-Down vs. Bottom-Up Control of Soft-Bottom Mussel-Bed Community Structure.- 2.7 Conclusions.- References.- 3 Suspension Feeders on Sandy Beaches.- 3.1 Introduction.- 3.2 Beach Morphodynamic Types vs. Community Structure of the Macroinfauna.- 3.3 Beach Morphodynamic Types and Abundances and Population Biology of E. analoga.- 3.4 Tidal Movements and Burrowing Behaviour.- 3.5 Across-and Along-Shore Zonation.- 3.6 Conclusions.- 3.6 References.- 4 Switching Between Deposit and Suspension Feeding in Coastal Zoobenthos.- 4.1 Overview.- 4.1.1 Polychaetes.- 4.1.2 Echinoderms.- 4.1.3 Bivalves.- 4.1.4 Amphipods.- 4.1.5 Soft Corals.- 4.1.6 Most Examples Among Passive Suspension Feeders.- 4.1.7 Adaptation to Suspension Feeding.- 4.2 Example I: Switching to Suspension Feeding in Nereis diversicolor.- 4.2.1 Suspension-Feeding Behaviour.- 4.2.2 Mucus-Net and Particle-Retention Efficiency.- 4.2.3 Filtration Rates.- 4.2.4 Energy Cost of Pumping.- 4.2.5 Adaptation to Suspension Feeding.- 4.2.6 Time Spent on Suspension Feeding.- 4.2.7 Phytoplankton Reduction in Near-Bottom Water.- 4.3 Example II: Switching to Suspension Feeding in Macoma balthica.- 4.3.1 Switching to Suspension Feeding.- 4.3.2 Current Velocity.- 4.3.3 Food Availability.- 4.3.4 Feeding on Siphon Tips.- 4.3.5 Protection Against Lethal Predation.- 4.4 Conclusions.- References.- II Biogenic Stabilization and Disturbances in Coastal Sediments.- 5 Microphytobenthos in Contrasting Coastal Ecosystems: Biology and Dynamics.- 5.1 Contrasting Shores.- 5.2 The Microphytobenthos.- 5.3 Physical and Biological Sediment Properties.- 5.3.1 Sediment Types and Stability.- 5.3.2 Physical Dynamics.- 5.4 Redefining Intertidal Sediments - The Five Phases of Depositional Environments.- 5.5 Comparative Biodiversity.- 5.5.1 Non-cohesive Sediments.- 5.5.2 Cohesive Sediments.- 5.5.3 Niche Diversity.- 5.6 Sediment Stability.- 5.7 Conceptual Model.- 5.8 Conclusions.- References.- 6 Sediment Dynamics by Bioturbating Organisms.- 6.1 Introduction.- 6.2 History of Bioturbation Research.- 6.3 Types of Bioturbation.- 6.3.1 Crawling and Dwelling Traces.- 6.3.2 Deposit Feeders.- 6.3.3 Larger Predators and Grazers.- 6.4 Seasonal Variation.- 6.5 Latitudinal Variation.- 6.6 Changes in Historical Times.- 6.7 Conclusions.- References.- 7 Competitive Bioturbators on Intertidal Sand Flats in the European Wadden Sea and Ariake Sound in Japan.- 7.1 Introduction.- 7.2 Large Bioturbators.- 7.3 Lugworms in the Wadden Sea.- 7.4 Effects of Lugworms on the Benthic Community.- 7.5 Ghost Shrimps in the Ariake Sound Estuarine System in Japan.- 7.6 Effects of the Ghost Shrimp Expansion and Decline.- 7.6.1 Effects on Sediment Properties.- 7.6.2 Effects on Invertebrates.- 7.7 Comparisons Between Biogeographic Regions.- References.- 8 Biological and Physical Processes That Affect Saltmarsh Erosion and Saltmarsh Restoration: Development of Hypotheses.- 8.1 Introduction.- 8.2 Managed Realignment.- 8.2.1 Physical Factors.- 8.2.2 Biological Factors.- 8.2.2.1 Effects of the Flora.- 8.2.2.2 Effects of Invertebrates.- 8.3 Managing Sediment Accretion and Development of Saltmarsh Vegetation in Managed Realignment Sites.- 8.3.1 Physical Factors.- 8.3.2 Biological Factors.- 8.4 Loss of S...
Vis mer