Utvidet returrett til 31. januar 2025

Efficient and Effective Tree-based and Neural Learning to Rank

Om Efficient and Effective Tree-based and Neural Learning to Rank

Information retrieval researchers develop algorithmic solutions to hard problems and insist on a proper, multifaceted evaluation of ideas. As we move towards even more complex deep learning models in a wide range of applications, questions on efficiency once again resurface with renewed urgency. Efficiency is no longer limited to time and space but has found new, challenging dimensions that stretch to resource-, sample- and energy-efficiency with ramifications for researchers, users, and the environment. This monograph takes a step towards promoting the study of efficiency in the era of neural information retrieval by offering a comprehensive survey of the literature on efficiency and effectiveness in ranking and retrieval. It is inspired by the parallels that exist between the challenges in neural network-based ranking solutions and their predecessors, decision forest-based learning-to-rank models, and the connections between the solutions the literature to date has to offer. By understanding the fundamentals underpinning these algorithmic and data structure solutions one can better identify future directions and more efficiently determine the merits of ideas.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9781638281986
  • Bindende:
  • Paperback
  • Sider:
  • 136
  • Utgitt:
  • 15. mai 2023
  • Dimensjoner:
  • 156x8x234 mm.
  • Vekt:
  • 219 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 19. desember 2024

Beskrivelse av Efficient and Effective Tree-based and Neural Learning to Rank

Information retrieval researchers develop algorithmic solutions to hard problems and insist on a proper, multifaceted evaluation of ideas. As we move towards even more complex deep learning models in a wide range of applications, questions on efficiency once again resurface with renewed urgency. Efficiency is no longer limited to time and space but has found new, challenging dimensions that stretch to resource-, sample- and energy-efficiency with ramifications for researchers, users, and the environment. This monograph takes a step towards promoting the study of efficiency in the era of neural information retrieval by offering a comprehensive survey of the literature on efficiency and effectiveness in ranking and retrieval. It is inspired by the parallels that exist between the challenges in neural network-based ranking solutions and their predecessors, decision forest-based learning-to-rank models, and the connections between the solutions the literature to date has to offer. By understanding the fundamentals underpinning these algorithmic and data structure solutions one can better identify future directions and more efficiently determine the merits of ideas.

Brukervurderinger av Efficient and Effective Tree-based and Neural Learning to Rank



Finn lignende bøker
Boken Efficient and Effective Tree-based and Neural Learning to Rank finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.