Utvidet returrett til 31. januar 2025

Expository Moments for Pseudo Distributions

Om Expository Moments for Pseudo Distributions

This book provides expository derivations for moments of a family of pseudo distributions, which is an extended family of distributions including the pseudo normal (PN) distributions recently proposed by the author. The PN includes the skew normal (SN) derived by A. Azzalini and the closed skew normal (CSN) obtained by A. Domínguez-Molina, G. González-Farías, and A. K. Gupta as special cases. It is known that the CSN includes the SN and other various distributions as special cases, which shows that the PN has a wider variety of distributions. The SN and CSN have symmetric and skewed asymmetric distributions. However, symmetric distributions are restricted to normal ones. On the other hand, symmetric distributions in the PN can be non-normal as well as normal. In this book, for the non-normal symmetric distributions, the term ¿kurtic normal (KN)¿ is used, where the coined word ¿kurtic¿ indicates ¿mesokurtic, leptokurtic, or platykurtic¿ used in statistics. The variety of the PN was made possible using stripe (tigerish) and sectional truncation in univariate and multivariate distributions, respectively. The proofs of the moments and associated results are not omitted and are often given in more than one method with their didactic explanations.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9789811935275
  • Bindende:
  • Paperback
  • Sider:
  • 356
  • Utgitt:
  • 3. januar 2024
  • Utgave:
  • 24001
  • Dimensjoner:
  • 155x20x235 mm.
  • Vekt:
  • 540 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 15. desember 2024

Beskrivelse av Expository Moments for Pseudo Distributions

This book provides expository derivations for moments of a family of pseudo distributions, which is an extended family of distributions including the pseudo normal (PN) distributions recently proposed by the author. The PN includes the skew normal (SN) derived by A. Azzalini and the closed skew normal (CSN) obtained by A. Domínguez-Molina, G. González-Farías, and A. K. Gupta as special cases. It is known that the CSN includes the SN and other various distributions as special cases, which shows that the PN has a wider variety of distributions. The SN and CSN have symmetric and skewed asymmetric distributions. However, symmetric distributions are restricted to normal ones. On the other hand, symmetric distributions in the PN can be non-normal as well as normal. In this book, for the non-normal symmetric distributions, the term ¿kurtic normal (KN)¿ is used, where the coined word ¿kurtic¿ indicates ¿mesokurtic, leptokurtic, or platykurtic¿ used in statistics. The variety of the PN was made possible using stripe (tigerish) and sectional truncation in univariate and multivariate distributions, respectively. The proofs of the moments and associated results are not omitted and are often given in more than one method with their didactic explanations.

Brukervurderinger av Expository Moments for Pseudo Distributions



Finn lignende bøker
Boken Expository Moments for Pseudo Distributions finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.