Utvidet returrett til 31. januar 2025
Om Federated Learning Systems

This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors¿ control of their critical data.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783030706067
  • Bindende:
  • Paperback
  • Sider:
  • 212
  • Utgitt:
  • 12. juni 2022
  • Utgave:
  • 22001
  • Dimensjoner:
  • 155x12x235 mm.
  • Vekt:
  • 330 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 27. desember 2024
Utvidet returrett til 31. januar 2025

Beskrivelse av Federated Learning Systems

This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors¿ control of their critical data.

Brukervurderinger av Federated Learning Systems



Finn lignende bøker
Boken Federated Learning Systems finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.