Norges billigste bøker

Fourier Series in Several Variables with Applications to Partial Differential Equations

Om Fourier Series in Several Variables with Applications to Partial Differential Equations

Fourier Series in Several Variables with Applications to Partial Differential Equations illustrates the value of Fourier series methods in solving difficult nonlinear partial differential equations (PDEs). Using these methods, the author presents results for stationary Navier-Stokes equations, nonlinear reaction-diffusion systems, and quasilinear elliptic PDEs and resonance theory. He also establishes the connection between multiple Fourier series and number theory. The book first presents four summability methods used in studying multiple Fourier series: iterated Fejer, Bochner-Riesz, Abel, and Gauss-Weierstrass. It then covers conjugate multiple Fourier series, the analogue of CantorΓÇÖs uniqueness theorem in two dimensions, surface spherical harmonics, and SchoenbergΓÇÖs theorem. After describing five theorems on periodic solutions of nonlinear PDEs, the text concludes with solutions of stationary Navier-Stokes equations. Discussing many results and studies from the literature, this book demonstrates the robust power of Fourier analysis in solving seemingly impenetrable nonlinear problems.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9780367382926
  • Bindende:
  • Paperback
  • Sider:
  • 352
  • Utgitt:
  • 23. oktober 2019
  • Dimensjoner:
  • 178x254x0 mm.
  • Vekt:
  • 607 g.
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 20. oktober 2025

Beskrivelse av Fourier Series in Several Variables with Applications to Partial Differential Equations

Fourier Series in Several Variables with Applications to Partial Differential Equations illustrates the value of Fourier series methods in solving difficult nonlinear partial differential equations (PDEs). Using these methods, the author presents results for stationary Navier-Stokes equations, nonlinear reaction-diffusion systems, and quasilinear elliptic PDEs and resonance theory. He also establishes the connection between multiple Fourier series and number theory.

The book first presents four summability methods used in studying multiple Fourier series: iterated Fejer, Bochner-Riesz, Abel, and Gauss-Weierstrass. It then covers conjugate multiple Fourier series, the analogue of CantorΓÇÖs uniqueness theorem in two dimensions, surface spherical harmonics, and SchoenbergΓÇÖs theorem. After describing five theorems on periodic solutions of nonlinear PDEs, the text concludes with solutions of stationary Navier-Stokes equations.

Discussing many results and studies from the literature, this book demonstrates the robust power of Fourier analysis in solving seemingly impenetrable nonlinear problems.

Brukervurderinger av Fourier Series in Several Variables with Applications to Partial Differential Equations



Finn lignende bøker
Boken Fourier Series in Several Variables with Applications to Partial Differential Equations finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.