Utvidet returrett til 31. januar 2024

Machine Learning Foundations

Om Machine Learning Foundations

This book provides conceptual understanding of machine learning algorithms though supervised, unsupervised, and advanced learning techniques. The book consists of four parts: foundation, supervised learning, unsupervised learning, and advanced learning. The first part provides the fundamental materials, background, and simple machine learning algorithms, as the preparation for studying machine learning algorithms. The second and the third parts provide understanding of the supervised learning algorithms and the unsupervised learning algorithms as the core parts. The last part provides advanced machine learning algorithms: ensemble learning, semi-supervised learning, temporal learning, and reinforced learning. Provides comprehensive coverage of both learning algorithms: supervised and unsupervised learning; Outlines the computation paradigm for solving classification, regression, and clustering; Features essential techniques for building the a new generation of machine learning.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783030658991
  • Bindende:
  • Hardback
  • Sider:
  • 391
  • Utgitt:
  • 13. februar 2021
  • Utgave:
  • 12021
  • Dimensjoner:
  • 155x235x0 mm.
  • Vekt:
  • 781 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 23. november 2024

Beskrivelse av Machine Learning Foundations

This book provides conceptual understanding of machine learning algorithms though supervised, unsupervised, and advanced learning techniques. The book consists of four parts: foundation, supervised learning, unsupervised learning, and advanced learning. The first part provides the fundamental materials, background, and simple machine learning algorithms, as the preparation for studying machine learning algorithms. The second and the third parts provide understanding of the supervised learning algorithms and the unsupervised learning algorithms as the core parts. The last part provides advanced machine learning algorithms: ensemble learning, semi-supervised learning, temporal learning, and reinforced learning.
Provides comprehensive coverage of both learning algorithms: supervised and unsupervised learning;
Outlines the computation paradigm for solving classification, regression, and clustering;
Features essential techniques for building the a new generation of machine learning.

Brukervurderinger av Machine Learning Foundations



Finn lignende bøker
Boken Machine Learning Foundations finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.