Utvidet returrett til 31. januar 2025

Machine Learning Guide for Oil and Gas Using Python

- A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications

Om Machine Learning Guide for Oil and Gas Using Python

Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges. Helps readers understand how open-source Python can be utilized in practical oil and gas challenges Covers the most commonly used algorithms for both supervised and unsupervised learningPresents a balanced approach of both theory and practicality while progressing from introductory to advanced analytical techniques

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9780128219294
  • Bindende:
  • Paperback
  • Sider:
  • 476
  • Utgitt:
  • 13. april 2021
  • Dimensjoner:
  • 228x152x31 mm.
  • Vekt:
  • 726 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: Ukjent

Beskrivelse av Machine Learning Guide for Oil and Gas Using Python

Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges.
Helps readers understand how open-source Python can be utilized in practical oil and gas challenges Covers the most commonly used algorithms for both supervised and unsupervised learningPresents a balanced approach of both theory and practicality while progressing from introductory to advanced analytical techniques

Brukervurderinger av Machine Learning Guide for Oil and Gas Using Python



Finn lignende bøker
Boken Machine Learning Guide for Oil and Gas Using Python finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.