Norges billigste bøker

Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen

Om Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen

Das Buch beschäftigt sich mit der Möglichkeit der Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Verfahren. Die Analyse beschränkt sich auf die Fragestellung, ob nach einem erfolgten Wohnungseinbruch mit einer Nachfolgetat, den sog. Near-Repeats, zu rechnen ist. Dabei wird untersucht, welche Faktoren zu guten Prognoseergebnissen beitragen. Zur Verfügung stehen Daten zu Wohnungseinbrüchen aus Baden-Württemberg aus den Jahren 2010 bis 2017. Ergänzt werden die polizeilichen Daten um geografische Daten, die den Tatort beschreiben. Hiermit wird geprüft, ob kriminalgeografische Faktoren gute Indikatoren zur Prognose von Wohnungseinbrüchen, genauer gesagt Near-Repeats, darstellen. Als Machine-Learning-Verfahren kommen die Verfahren Random Forest, XGBoost, Support Vector Machines, Neuronale Netze und ein Soft-Voting der Modelle zum Einsatz. Mit Hilfe dieser Verfahren kann eine Präzision der Prognosen von über 60% erreicht werden. Es wird außerdem erstmalig gezeigt, dass auch Prognosen für den ländlichen Raum möglich sind.

Vis mer
  • Språk:
  • Tysk
  • ISBN:
  • 9783658376598
  • Bindende:
  • Paperback
  • Sider:
  • 108
  • Utgitt:
  • 28. mai 2022
  • Utgave:
  • 22001
  • Dimensjoner:
  • 148x7x210 mm.
  • Vekt:
  • 152 g.
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 27. desember 2024
Utvidet returrett til 31. januar 2025

Beskrivelse av Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen

Das Buch beschäftigt sich mit der Möglichkeit der Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Verfahren. Die Analyse beschränkt sich auf die Fragestellung, ob nach einem erfolgten Wohnungseinbruch mit einer Nachfolgetat, den sog. Near-Repeats, zu rechnen ist. Dabei wird untersucht, welche Faktoren zu guten Prognoseergebnissen beitragen. Zur Verfügung stehen Daten zu Wohnungseinbrüchen aus Baden-Württemberg aus den Jahren 2010 bis 2017. Ergänzt werden die polizeilichen Daten um geografische Daten, die den Tatort beschreiben. Hiermit wird geprüft, ob kriminalgeografische Faktoren gute Indikatoren zur Prognose von Wohnungseinbrüchen, genauer gesagt Near-Repeats, darstellen. Als Machine-Learning-Verfahren kommen die Verfahren Random Forest, XGBoost, Support Vector Machines, Neuronale Netze und ein Soft-Voting der Modelle zum Einsatz. Mit Hilfe dieser Verfahren kann eine Präzision der Prognosen von über 60% erreicht werden. Es wird außerdem erstmalig gezeigt, dass auch Prognosen für den ländlichen Raum möglich sind.

Brukervurderinger av Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen



Finn lignende bøker
Boken Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.