Utvidet returrett til 31. januar 2025

Representation Theory of Finite Group Extensions

Om Representation Theory of Finite Group Extensions

This monograph adopts an operational and functional analytic approach to the following problem: given a short exact sequence (group extension) 1 ¿ N ¿ G ¿ H ¿ 1 of finite groups, describe the irreducible representations of G by means of the structure of the group extension. This problem has attracted many mathematicians, including I. Schur, A.H. Clifford, and G. Mackey and, more recently, M. Isaacs, B. Huppert, Y.G. Berkovich & E.M. Zhmud, and J.M.G. Fell & R.S. Doran. The main topics are, on the one hand, Clifford Theory and the Little Group Method (of Mackey and Wigner) for induced representations, and, on the other hand, Kirillov¿s Orbit Method (for step-2 nilpotent groups of odd order) which establishes a natural and powerful correspondence between Lie rings and nilpotent groups. As an application, a detailed description is given of the representation theory of the alternating groups, of metacyclic, quaternionic, dihedral groups, and of the (finite) Heisenberg group. TheLittle Group Method may be applied if and only if a suitable unitary 2-cocycle (the Mackey obstruction) is trivial. To overcome this obstacle, (unitary) projective representations are introduced and corresponding Mackey and Clifford theories are developed. The commutant of an induced representation and the relative Hecke algebra is also examined. Finally, there is a comprehensive exposition of the theory of projective representations for finite Abelian groups which is applied to obtain a complete description of the irreducible representations of finite metabelian groups of odd order.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783031138751
  • Bindende:
  • Paperback
  • Sider:
  • 356
  • Utgitt:
  • 30. november 2023
  • Utgave:
  • 23001
  • Dimensjoner:
  • 155x20x235 mm.
  • Vekt:
  • 540 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 15. desember 2024

Beskrivelse av Representation Theory of Finite Group Extensions

This monograph adopts an operational and functional analytic approach to the following problem: given a short exact sequence (group extension) 1 ¿ N ¿ G ¿ H ¿ 1 of finite groups, describe the irreducible representations of G by means of the structure of the group extension. This problem has attracted many mathematicians, including I. Schur, A.H. Clifford, and G. Mackey and, more recently, M. Isaacs, B. Huppert, Y.G. Berkovich & E.M. Zhmud, and J.M.G. Fell & R.S. Doran.
The main topics are, on the one hand, Clifford Theory and the Little Group Method (of Mackey and Wigner) for induced representations, and, on the other hand, Kirillov¿s Orbit Method (for step-2 nilpotent groups of odd order) which establishes a natural and powerful correspondence between Lie rings and nilpotent groups. As an application, a detailed description is given of the representation theory of the alternating groups, of metacyclic, quaternionic, dihedral groups, and of the (finite) Heisenberg group.

TheLittle Group Method may be applied if and only if a suitable unitary 2-cocycle (the Mackey obstruction) is trivial. To overcome this obstacle, (unitary) projective representations are introduced and corresponding Mackey and Clifford theories are developed. The commutant of an induced representation and the relative Hecke algebra is also examined. Finally, there is a comprehensive exposition of the theory of projective representations for finite Abelian groups which is applied to obtain a complete description of the irreducible representations of finite metabelian groups of odd order.

Brukervurderinger av Representation Theory of Finite Group Extensions



Finn lignende bøker
Boken Representation Theory of Finite Group Extensions finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.